Skip to main content
Log in

Peak strain dispersion within the left ventricle detected by two-dimensional speckle tracking in patients with uncomplicated systemic lupus erythematosus

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) often leads to various cardiovascular diseases. We aimed to investigate the value of peak strain dispersion (PSD) in evaluating left ventricular dysfunction in patients with uncomplicated SLE. Eighty-seven female SLE patients and fifty-nine healthy female controls were recruited. The SLE patients were divided into inactive disease (SLE disease activity index (SLEDAI) ≤ 4; n = 48) and active disease (SLEDAI ≥ 5; n = 39) subgroups. Traditional echocardiography and two-dimensional speckle-tracking echocardiography were performed using a GE VividE9 ultrasound diagnostic system and an advanced quantitative analysis EchoPAC workstation (version 201), respectively. The global longitudinal strain (GLS) in the SLE with SLEDAI ≤ 4 group was comparable to that in the control group (− 19.89% vs − 20.7%; P = 0.061). However, GLS was obviously damaged in the SLE with SLEDAI ≥ 5 group compared with that in the control group (− 19.07% vs − 20.7%; P < 0.001). PSD impairment was observed in the SLE with SLEDAI ≤ 4 group (33.83 ms vs 31.44 ms; P = 0.012) and SLE with SLEDAI ≥ 5 groups (52.31 ms vs 31.44 ms; P < 0.001), but the largest difference was observed in the active disease group. Linear regression analysis showed that PSD was moderately correlated with the SLEDAI (r = 0.535; P < 0.001) in SLE patients with SLEDAI ≤ 4 and showed the best correlation with the SLEDAI (r = 0.646; P < 0.001) in the SLE patients with SLEDAI ≥ 5. A correlation between GLS and the SLEDAI (r = 0.359; P = 0.025) was found in the active disease group but not in the inactive disease group (r = 0.253; P = 0.082). PSD is more comprehensive and accurate for evaluating left ventricular subclinical dysfunction in SLE patients. In inactive SLE patients, PSD is a more sensitive index to evaluate early systolic dysfunction of the left ventricle. GLS may be a more vulnerable indicator of early left ventricular cardiac dysfunction in active SLE patients. Controlling disease activity may reduce the events of cardiac dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mok CC (2011) Epidemiology and survival of systemic lupus erythematosus in Hong Kong Chinese. Lupus 20(7):767–771

    Article  CAS  PubMed  Google Scholar 

  2. Doria A et al (2005) Cardiac involvement in systemic lupus erythematosus. Lupus 14(9):683–686

    Article  CAS  PubMed  Google Scholar 

  3. Leung WH et al (1990) Association between antiphospholipid antibodies and cardiac abnormalities in patients with systemic lupus erythematosus. Am J Med 89(4):411–419

    Article  CAS  PubMed  Google Scholar 

  4. Vila LM et al (1999) Lymphocyte populations and cytokine concentrations in pericardial fluid from a systemic lupus erythematosus patient with cardiac tamponade. Ann Rheum Dis 58(11):720–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bienias P et al (2019) Comparison of non-invasive assessment of arrhythmias, conduction disturbances and cardiac autonomic tone in systemic sclerosis and systemic lupus erythematosus. Rheumatol Int 39(2):301–310

    Article  PubMed  Google Scholar 

  6. Bartels CM et al (2014) Mortality and cardiovascular burden of systemic lupus erythematosus in a US population-based cohort. J Rheumatol 41(4):680–687

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bengtsson C et al (2012) Cardiovascular event in systemic lupus erythematosus in northern Sweden: incidence and predictors in a 7-year follow-up study. Lupus 21(4):452–459

    Article  CAS  PubMed  Google Scholar 

  8. Keeling SO et al (2018) Measuring disease activity and damage with validated metrics: a systematic review on mortality and damage in systemic lupus erythematosus. J Rheumatol 45(10):1448–1461

    Article  PubMed  Google Scholar 

  9. Hesselvig JH et al (2017) Cutaneous lupus erythematosus and systemic lupus erythematosus are associated with clinically significant cardiovascular risk: a Danish nationwide cohort study. Lupus 26(1):48–53

    Article  PubMed  Google Scholar 

  10. Haque S, Bruce IN (2005) Therapy insight: systemic lupus erythematosus as a risk factor for cardiovascular disease. Nat Clin Pract Cardiovasc Med 2(8):423–430

    Article  CAS  PubMed  Google Scholar 

  11. Leitman M et al (2004) Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 17(10):1021–1029

    Article  PubMed  Google Scholar 

  12. Carasso S et al (2013) Left ventricular function and functional recovery early and late after myocardial infarction: a prospective pilot study comparing two-dimensional strain, conventional echocardiography, and radionuclide myocardial perfusion imaging. J Am Soc Echocardiogr 26(11):1235–1244

    Article  PubMed  Google Scholar 

  13. Blessberger H, Binder T (2010) NON-invasive imaging: two dimensional speckle tracking echocardiography: basic principles. Heart 96(9):716–722

    Article  PubMed  Google Scholar 

  14. Amundsen BH et al (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47(4):789–793

    Article  PubMed  Google Scholar 

  15. Skaarup KG et al (2018) Association between layer-specific global longitudinal strain and adverse outcomes following acute coronary syndrome. Eur Heart J Cardiovasc Imaging 19(12):1334–1342

    Article  PubMed  Google Scholar 

  16. Kim D et al (2017) Differences in left ventricular functional adaptation to arterial stiffness and neurohormonal activation in patients with hypertension: a study with two-dimensional layer-specific speckle tracking echocardiography. Clin Hypertens 23:21

    Article  PubMed  PubMed Central  Google Scholar 

  17. Perdreau E et al (2016) Postoperative assessment of left ventricular function by two-dimensional strain (speckle tracking) after paediatric cardiac surgery. Arch Cardiovasc Dis 109(11):599–606

    Article  PubMed  Google Scholar 

  18. Cusma Piccione M et al (2013) Role of 2D strain in the early identification of left ventricular dysfunction and in the risk stratification of systemic sclerosis patients. Cardiovasc Ultrasound 11:6

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hassanin N, Alkemary A (2016) Early detection of subclinical uremic cardiomyopathy using two-dimensional speckle tracking echocardiography. Echocardiography 33(4):527–536

    Article  PubMed  Google Scholar 

  20. Wierzbowska-Drabik K, Plewka M, Kasprzak JD (2017) Variability of longitudinal strain in left ventricular segments supplied by non-stenosed coronary artery: insights from speckle tracking analysis of dobutamine stress echocardiograms in patients with high coronary risk profile. AMS 13(1):82–92

    PubMed  Google Scholar 

  21. Aagaard EN et al (2020) Left ventricular mechanical dispersion in a general population: data from the Akershus Cardiac Examination 1950 study. Eur Heart J Cardiovasc Imaging 21(2):183–190

    PubMed  Google Scholar 

  22. Kosiuk J et al (2015) Association between ventricular arrhythmias and myocardial mechanical dispersion assessed by strain analysis in patients with nonischemic cardiomyopathy. Clin Res Cardiol 104(12):1072–1077

    Article  CAS  PubMed  Google Scholar 

  23. Kvisvik B et al (2019) Mechanical dispersion as a marker of left ventricular dysfunction and prognosis in stable coronary artery disease. Int J Cardiovasc Imaging 35(7):1265–1275

    Article  PubMed  Google Scholar 

  24. Ermakov S et al (2019) Left ventricular mechanical dispersion predicts arrhythmic risk in mitral valve prolapse. Heart 105(14):1063–1069

    Article  CAS  PubMed  Google Scholar 

  25. Klaeboe LG et al (2017) Prognostic value of left ventricular deformation parameters in patients with severe aortic stenosis: a pilot study of the usefulness of strain echocardiography. J Am Soc Echocardiogr 30(8):727-735.e1

    Article  PubMed  Google Scholar 

  26. Prihadi EA et al (2019) Determinants and prognostic implications of left ventricular mechanical dispersion in aortic stenosis. Eur Heart J Cardiovasc Imaging 20(7):740–748

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhu M et al (2019) Left ventricular global longitudinal strain and mechanical dispersion predict response to multipoint pacing for cardiac resynchronization therapy. J Clin Ultrasound 47(6):356–365

    Article  PubMed  Google Scholar 

  28. Hensen LCR et al (2018) Left ventricular mechanical dispersion and global longitudinal strain and ventricular arrhythmias in predialysis and dialysis patients. J Am Soc Echocardiogr 31(7):777–783

    Article  PubMed  Google Scholar 

  29. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40(9):1725

    Article  CAS  PubMed  Google Scholar 

  30. Gladman DD, Ibanez D, Urowitz MB (2002) Systemic lupus erythematosus disease activity index 2000. J Rheumatol 29(2):288–291

    PubMed  Google Scholar 

  31. Bernatsky S et al (2007) A population-based assessment of systemic lupus erythematosus incidence and prevalence—results and implications of using administrative data for epidemiological studies. Rheumatology (Oxford) 46(12):1814–1818

    Article  CAS  Google Scholar 

  32. Knight JS, Kaplan MJ (2013) Cardiovascular disease in lupus: insights and updates. Curr Opin Rheumatol 25(5):597–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ng AC et al (2008) Comparison of myocardial tissue velocities measured by two-dimensional speckle tracking and tissue Doppler imaging. Am J Cardiol 102(6):784–789

    Article  PubMed  Google Scholar 

  34. Henein MY, Gibson DG (1999) Normal long axis function. Heart 81(2):111–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haugaa KH et al (2010) Mechanical dispersion assessed by myocardial strain in patients after myocardial infarction for risk prediction of ventricular arrhythmia. JACC Cardiovasc Imaging 3(3):247–256

    Article  PubMed  Google Scholar 

  36. Jain D, Halushka MK (2009) Cardiac pathology of systemic lupus erythematosus. J Clin Pathol 62(7):584–592

    Article  CAS  PubMed  Google Scholar 

  37. Kobayashi H et al (2010) Cardiac magnetic resonance imaging abnormalities in patients with systemic lupus erythematosus: a preliminary report. Mod Rheumatol 20(3):319–323

    Article  PubMed  Google Scholar 

  38. Yap DY, Lai KN (2010) Cytokines and their roles in the pathogenesis of systemic lupus erythematosus: from basics to recent advances. J Biomed Biotechnol 2010:365083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Liu Y, Kaplan MJ (2018) Cardiovascular disease in systemic lupus erythematosus: an update. Curr Opin Rheumatol 30(5):441–448

    Article  PubMed  Google Scholar 

  40. Roman MJ et al (2003) Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus. N Engl J Med 349(25):2399–2406

    Article  CAS  PubMed  Google Scholar 

  41. Yip GW et al (2009) Disease chronicity and activity predict subclinical left ventricular systolic dysfunction in patients with systemic lupus erythematosus. Heart 95(12):980–987

    Article  PubMed  Google Scholar 

  42. Tincani A et al (2006) Heart involvement in systemic lupus erythematosus, anti-phospholipid syndrome and neonatal lupus. Rheumatology (Oxford) 45(Suppl 4):iv8–iv13

    Article  Google Scholar 

Download references

Funding

This study was funded by the Key Research & Development Projects of Sichuan Province (Grant Number 2020YFS0245).

Author information

Authors and Affiliations

Authors

Contributions

CL, WB and LR contributed to the study conception and design. Data collection and analysis were performed by CL, KL and MY. The first draft of the manuscript was written by CL. All the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Li Rao.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Consent for publication

All authors provided their consent for publication.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, K., Yuan, M. et al. Peak strain dispersion within the left ventricle detected by two-dimensional speckle tracking in patients with uncomplicated systemic lupus erythematosus. Int J Cardiovasc Imaging 37, 2197–2205 (2021). https://doi.org/10.1007/s10554-021-02201-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02201-7

Keywords

Navigation