Skip to main content

Advertisement

Log in

Incremental prognostic role of left atrial reservoir strain in asymptomatic patients with moderate aortic stenosis

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Left atrial (LA) mechanics assessed by two-dimensional speckle tracking echocardiography (2D-STE) have not been extensively studied and clearly characterized in patients with moderate aortic stenosis (AS). Accordingly, we aimed to evaluate the usefulness of LA reservoir strain for risk stratification of asymptomatic patients with moderate AS. This retrospective study included all consecutive asymptomatic patients with moderate AS who underwent transthoracic echocardiography implemented with 2D-STE analysis of LA myocardial strain and strain rate indices at our Institution, between February 2011 and September 2019. During the follow-up period, we evaluated the occurrence of any of the following: (1) CV hospitalization; (2) The recourse to AS surgery; (3) Cardiac death or sudden death. A total of 186 patients (mean age 71.9 ± 12.7 years, 61.8% men) were included in the present study. During a mean follow-up of 2.3 ± 1.9 years, no patients died and 63 adverse CV events were recorded: 48 patients were hospitalized because of heart failure (28 patients), acute coronary syndrome (10 patients), arrhythmias (10 patients) and 15 patients underwent AS surgery. At the multivariate Cox regression analysis, type 2 diabetes mellitus (OR 1.87, 95%CI 1.05–3.34, p = 0.03), NT-proBNP (OR average 1.14, 95%CI 1.02–1.27, p = 0.02), average E/e′ ratio (OR 1.07, 95%CI 1.01–1.15, p = 0.04) and most of all left atrial positive global strain (LA-GSA+) (OR 0.85, 95%CI 0.81–0.90, p < 0.0001) were independently associated with the outcome. LA-GSA+ (optimal cut-off ≤ 19%, AUC = 0.94, 87% sensitivity, 99% specificity, positive predictive value 99%, negative predictive value 88%) showed the highest diagnostic performance. An impaired LA reservoir strain can contribute to identify a subset of asymptomatic patients with moderate AS at higher risk, who may benefit from closer echocardiographic follow-up and/or early surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

ACS:

Acute coronary syndrome

AF:

Atrial fibrillation

AS:

Aortic stenosis

AUC:

Area under the curve

AVA:

Aortic valve area

BP:

Blood pressure

BSA:

Body surface area

CAD:

Coronary artery disease

CHF:

Congestive heart failure

CI:

Confidence interval

CT:

Computed tomography

CV:

Cardiovascular

EaI:

Arterial elastance index

ECG:

Electrocardiogram

eGFR:

Estimated glomerular filtration rate

ESP:

End-systolic pressure

GSA+:

Positive global atrial strain

GSA−:

Negative global atrial strain

GSR+:

Positive global strain rate

GSRE:

Global early-diastolic strain rate

GSRL:

Global late-diastolic strain rate

HR:

Heart rate

ICC:

Intraclass correlation coefficient

LDL:

Low-density lipoprotein

LA:

Left atrial

LAVi:

Left atrial volume index

LV:

Left ventricular

LVEDVi:

Left ventricular end-diastolic volume index

LVEF:

Left ventricular ejection fraction

LVFP:

Left ventricular filling pressure

LVMi:

Left ventricular mass index

LVOT:

Left ventricular outflow tract

MR:

Mitral regurgitation

MTPG:

Mean transaortic pressure gradient

NT-proBNP:

N-terminal pro–B-type natriuretic peptide

PH:

Pulmonary hypertension

RVIT:

Right ventricular inflow tract

ROC:

Receiver operating characteristics

SPAP:

Systolic pulmonary artery pressure

SR:

Strain rate

STE:

Speckle tracking echocardiography

SVi:

Stroke volume index

TAPSE:

Tricuspid annular plane systolic excursion

TAVR:

Transcatheter aortic valve replacement

TRV:

Tricuspid regurgitation velocity

TTE:

Transthoracic echocardiography

References

  1. Turina J, Hess O, Sepulcri F, Krayenbuehl HP (1987) Spontaneous course of aortic valve disease. Eur Heart J 8:471–483

    CAS  PubMed  Google Scholar 

  2. Horstkotte D, Loogen F (1988) The natural history of aortic valve stenosis. Eur Heart J 9:57–64

    PubMed  Google Scholar 

  3. Delesalle G, Bohbot Y, Rusinaru D, Delpierre Q, Maréchaux S, Tribouilloy C (2019) Characteristics and prognosis of patients with moderate aortic stenosis and preserved left ventricular ejection fraction. J Am Heart Assoc 8:e011036

    PubMed  PubMed Central  Google Scholar 

  4. Rosenhek R, Klaar U, Schemper M et al (2004) (2004) Mild and moderate aortic stenosis: natural history and risk stratification by echocardiography. Eur Heart J 25:199–205

    PubMed  Google Scholar 

  5. Kennedy KD, Nishimura RA, Holmes DR Jr, Bailey KR (1991) Natural history of moderate aortic stenosis. J Am Coll Cardiol 17:313–319

    CAS  PubMed  Google Scholar 

  6. Otto CM, Burwash IG, Legget ME et al (1997) Prospective study of asymptomatic valvular aortic stenosis. Clinical, echocardiographic, and exercise predictors of outcome. Circulation 95:2262–2270

    CAS  PubMed  Google Scholar 

  7. Yechoor P, Blaustein AS, Bakaeen FG et al (2013) The natural history of moderate aortic stenosis in a veteran population. J Thorac Cardiovasc Surg 145:1550–1553

    PubMed  Google Scholar 

  8. Cioffi G, Faggiano P, Vizzardi E et al (2011) Prognostic effect of inappropriately high left ventricular mass in asymptomatic severe aortic stenosis. Heart 97:301–307

    PubMed  Google Scholar 

  9. Messika-Zeitoun D, Bielak LF, Peyser PA et al (2007) Aortic valve calcification: determinants and progression in the population. Arterioscler Thromb Vasc Biol 27:642–648

    CAS  PubMed  Google Scholar 

  10. Rosenhek R, Binder T, Porenta G et al (2000) Predictors of outcome in severe, asymptomatic aortic stenosis. N Engl J Med 343:611–617

    CAS  PubMed  Google Scholar 

  11. Lancellotti P, Lebois F, Simon M, Tombeux C, Chauvel C, Pierard LA (2005) Prognostic importance of quantitative exercise Doppler echocardiography in asymptomatic valvular aortic stenosis. Circulation 112:I377–I382

    PubMed  Google Scholar 

  12. Zlotnick DM, Ouellette ML, Malenka DJ et al (2013) Effect of preoperative pulmonary hypertension on outcomes in patients with severe aortic stenosis following surgical aortic valve replacement. Am J Cardiol 112:1635–1640

    PubMed  Google Scholar 

  13. Lancellotti P, Magne J, Donal E et al (2012) Determinants and prognostic significance of exercise pulmonary hypertension in asymptomatic severe aortic stenosis. Circulation 126:851–859

    PubMed  Google Scholar 

  14. Bergler-Klein J, Klaar U, Heger M et al (2004) Natriuretic peptides predict symptom-free survival and postoperative outcome in severe aortic stenosis. Circulation 109:2302–2308

    CAS  PubMed  Google Scholar 

  15. Galli E, Fournet M, Chabanne C et al (2015) Prognostic value of left atrial reservoir function in patients with severe aortic stenosis: a 2D speckle-tracking echocardiographic study. Eur Heart J Cardiovasc Imaging 17:533–41

    PubMed  Google Scholar 

  16. Todaro MC, Carerj S, Khandheria B et al (2016) Usefulness of atrial function for risk stratification in asymptomatic severe aortic stenosis. J Cardiol 67:71–79

    PubMed  Google Scholar 

  17. Marques-Alves P, Marinho AV, Teixeira R et al (2019) Going beyond classic echo in aortic stenosis: left atrial mechanics, a new marker of severity. BMC Cardiovasc Disord 19:215

    PubMed  PubMed Central  Google Scholar 

  18. Antonini-Canterin F, Di Nora C, Cervesato E et al (2018) Value of ejection fraction/velocity ratio in the prognostic stratification of patients with asymptomatic aortic valve stenosis. Echocardiography 35:1909–1914

    PubMed  Google Scholar 

  19. Ito S, Miranda WR, Nkomo VT et al (2020) Prognostic risk stratification of patients with moderate aortic stenosis. J Am Soc Echocardiogr. https://doi.org/10.1016/j.echo.2020.10.012

    Article  PubMed  Google Scholar 

  20. Baumgartner H, Hung J, Bermejo J et al (2017) Recommendations on the echocardiographic assessment of aortic valve stenosis: a focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr 30:372–392

    PubMed  Google Scholar 

  21. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in renal disease study group. Ann Intern Med 130:461–470

    CAS  PubMed  Google Scholar 

  22. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1-39.e14

    PubMed  Google Scholar 

  23. Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29:277–314

    PubMed  Google Scholar 

  24. Devereux RB, Alonso DR, Lutas EM et al (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458

    CAS  PubMed  Google Scholar 

  25. Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713

    PubMed  Google Scholar 

  26. Redfield MM, Jacobsen SJ, Borlaug BA et al (2005) Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation 112:2254–2262

    PubMed  Google Scholar 

  27. Chen CH, Fetics B, Nevo E et al (2001) Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol 38:2028–2034

    CAS  PubMed  Google Scholar 

  28. Kusunose K, Yamada H, Nishio S et al (2012) Index-beat assessment of left ventricular systolic and diastolic function during atrial fibrillation using myocardial strain and strain rate. J Am Soc Echocardiogr 25:953–959

    PubMed  Google Scholar 

  29. Thomas L, McKay T, Byth K, Marwick TH (2007) Abnormalities of left atrial function after cardioversion: an atrial strain rate study. Heart 93:89–95

    CAS  PubMed  Google Scholar 

  30. Lin JD, Chen YL, Wu CZ et al (2016) Identification of normal blood pressure in different age group. Medicine (Baltimore) 95:e3188

    Google Scholar 

  31. Wetzels JF, Kiemeney LA, Swinkels DW, Willems HL, den Heijer M (2007) Age- and gender-specific reference values of estimated GFR in Caucasians: the Nijmegen Biomedical Study. Kidney Int 72:632–637

    CAS  PubMed  Google Scholar 

  32. Catapano AL, Graham I, De Backer G et al (2016) 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J 37:2999–3058

    PubMed  Google Scholar 

  33. Hughes D, Talwar S, Squire IB, Davies JE, Ng LL (1999) An immunoluminometric assay for N-terminal pro-brain natriuretic peptide: development of a test for left ventricular dysfunction. Clin Sci (Lond) 96:373–380

    CAS  Google Scholar 

  34. Antonini-Canterin F, Poli S, Vriz O, Pavan D, Bello VD, Nicolosi GL (2013) The ventricular-arterial coupling: from basic pathophysiology to clinical application in the echocardiography laboratory. J Cardiovasc Echogr 23:91–95

    PubMed  PubMed Central  Google Scholar 

  35. Sugimoto T, Robinet S, Dulgheru R et al (2018) Echocardiographic reference ranges for normal left atrial function parameters: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging 19:630–638

    PubMed  Google Scholar 

  36. Baumgartner H, Falk V, Bax JJ et al (2017) 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J 38:2739–2791

    PubMed  Google Scholar 

  37. Nishimura RA, Otto CM, Bonow RO et al (2014) 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129:2440–2492

    PubMed  Google Scholar 

  38. Faggiano P, Antonini-Canterin F, Erlicher A et al (2003) Progression of aortic valve sclerosis to aortic stenosis. Am J Cardiol 91:99–101

    PubMed  Google Scholar 

  39. van Gils L, Clavel MA, Vollema EM et al (2017) Prognostic implications of moderate aortic stenosis in patients with left ventricular systolic dysfunction. J Am Coll Cardiol 69:2383–2392

    PubMed  Google Scholar 

  40. Cameli M, Mandoli GE, Loiacono F et al (2016) Left atrial strain: a new parameter for assessment of left ventricular filling pressure. Heart Fail Rev 21:65–76

    PubMed  Google Scholar 

  41. Lin J, Ma H, Gao L et al (2020) Left atrial reservoir strain combined with E/E′ as a better single measure to predict elevated LV filling pressures in patients with coronary artery disease. Cardiovasc Ultrasound 25(18):11

    Google Scholar 

  42. Fan JL, Su B, Zhao X et al (2020) Correlation of left atrial strain with left ventricular end-diastolic pressure in patients with normal left ventricular ejection fraction. Int J Cardiovasc Imaging 36:1659–1666

    PubMed  PubMed Central  Google Scholar 

  43. Longobardo L, Todaro MC, Zito C et al (2014) Role of imaging in assessment of atrial fibrosis in patients with atrial fibrillation: state-of-the-art review. Eur Heart J Cardiovasc Imaging 15:1–5

    PubMed  Google Scholar 

  44. Zaid RR, Barker CM, Little SH, Nagueh SF (2013) Pre- and post-operative diastolic dysfunction in patients with valvular heart disease: diagnosis and therapeutic implications. J Am Coll Cardiol 62:1922–1930

    PubMed  Google Scholar 

  45. Chin CWL, Everett RJ, Kwiecinski J et al (2017) Myocardial fibrosis and cardiac decompensation in aortic stenosis. JACC Cardiovasc Imaging 10:1320–1333

    PubMed  PubMed Central  Google Scholar 

  46. Aalaei-Andabili SH, Bavry AA (2019) Left ventricular diastolic dysfunction and transcatheter aortic valve replacement outcomes: a review. Cardiol Ther 8:21–28

    PubMed  PubMed Central  Google Scholar 

  47. Salas-Pacheco JL, Ávila-Vanzzini N, Eugenia REM, Arias-Godínez JA (2016) Left atrium function by 2D speckle tracking in aortic valve disease. Echocardiography 33:1828–1834

    PubMed  Google Scholar 

  48. Calin A, Mateescu AD, Rosca M et al (2017) Left atrial dysfunction as a determinant of pulmonary hypertension in patients with severe aortic stenosis and preserved left ventricular ejection fraction. Int J Cardiovasc Imaging 33:1939–1947

    PubMed  Google Scholar 

  49. Kamalesh M, Ng C, El Masry H et al (2009) Does diabetes accelerate progression of calcific aortic stenosis? Eur J Echocardiogr 10:723–725

    PubMed  Google Scholar 

  50. Natorska J, Wypasek E, Grudzien G et al (2012) Does diabetes accelerate the progression of aortic stenosis through enhanced inflammatory response within aortic valves? Inflammation 3:834–840

    Google Scholar 

  51. Larsson S, Wallin A, Hakansson N et al (2018) Type 1 and type 2 diabetes and incidence of seven cardiovascular diseases. Int J Cardiol 262:66–70

    PubMed  Google Scholar 

  52. Messika-Zeitoun D, Aubry MC, Detaint D et al (2004) Evaluation and clinical implications of aortic valve calcification measured by electron-beam computed tomography. Circulation 110:356–362

    PubMed  Google Scholar 

  53. D’Ascenzi F, Cameli M, Henein M et al (2013) Left atrial remodelling in patients undergoing transcatheter aortic valve implantation: a speckle-tracking prospective, longitudinal study. Int J Cardiovasc Imaging 29:1717–1724

    PubMed  Google Scholar 

  54. Sonaglioni A, Vincenti A, Baravelli M et al (2019) Prognostic value of global left atrial peak strain in patients with acute ischemic stroke and no evidence of atrial fibrillation. Int J Cardiovasc Imaging 35:603–613

    PubMed  Google Scholar 

  55. Voigt JU, Pedrizzetti G, Lysyansky P et al (2015) Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 16:1–11

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by Italian Ministry of Health Ricerca Corrente—IRCCS MultiMedica.

Author information

Authors and Affiliations

Authors

Contributions

AS: Conceptualization; Data curation; Investigation; Methodology; Software; Visualization; Writing—original draft. GLN: Conceptualization; Data curation; Methodology; Writing—review & editing. ER: Conceptualization; Data curation; Methodology; Writing—review & editing. ML: Conceptualization; Supervision; Validation; Writing—review & editing.

Corresponding author

Correspondence to Andrea Sonaglioni.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest associated with this publication.

Ethical approval

All procedures performed in the present study were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonaglioni, A., Nicolosi, G.L., Rigamonti, E. et al. Incremental prognostic role of left atrial reservoir strain in asymptomatic patients with moderate aortic stenosis. Int J Cardiovasc Imaging 37, 1913–1925 (2021). https://doi.org/10.1007/s10554-021-02175-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02175-6

Keywords

Navigation