Skip to main content
Log in

Detection of cardiac allograft vasculopathy by multi-layer left ventricular longitudinal strain in heart transplant recipients

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Cardiac allograft vasculopathy (CAV) is an obliterative and diffuse type of coronaropathy that develops in the transplanted human heart, representing a major cause of graft failure and mortality. Nowadays the gold standard for the diagnosis of CAV is coronary angiography (CA). Non-invasive CAV detection, especially in the early stages of the disease, is still challenging. Our study aimed to investigate the role of speckle tracking echocardiography (STE), in particular three-layer STE, in predicting CAV at early stages, and if other traditional echocardiographic, clinical or biochemical parameters could relate to CAV. The study population was composed of a total of 33 heart transplanted patients, divided accordingly to the presence or absence of CAV (12 CAV+ , 22 CAV−). All subjects underwent a complete transthoracic echocardiographic examination on the same day of the CA, and all conventional parameters of myocardial function were obtained, including strain values assessed by STE. Strain values were significantly reduced in presence of CAV, at each myocardial layer but in particular the endocardial-epicardial gradient (− 4.15 ± 1.6 vs − 1.7 ± 0.4% < .0001) that was also highly predictive of CAV (AUC at ROC curve 0.97). Among diastolic parameters, the E wave deceleration time (DT) and the mean E/e′ ratio were strongly positively associated with CAV. In our population, left ventricular global longitudinal strain (GLS), layer-specific GLS and the endocardial-epicardial LS gradient, E wave DT and E/e′ ratio were the best independent non-invasive predictors of CAV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chang DH, Kobashigawa JA (2015) Current diagnostic and treatment strategies for cardiac allograft vasculopathy. Expert Rev Cardiovasc Ther 13:1147–1154

    Article  CAS  PubMed  Google Scholar 

  2. Sipahi I, Starling RC (2007) Cardiac allograft vasculopathy: an update. Heart Fail Clin 3:87–95

    Article  PubMed  Google Scholar 

  3. Morisco C, Barbato E (2019) From microvascular impairment to cardiac allograft vasculopathy: a disease continuum. Int J Cardiol 290:33

    Article  PubMed  Google Scholar 

  4. Mehra MR, Crespo-Leiro MG, Dipchand A et al (2010) International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy–2010. J Heart Lung Transplant 29:717–727

    Article  PubMed  Google Scholar 

  5. Costanzo MR, Dipchand A, Starling R et al (2010) The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant 29:914–956

    Article  PubMed  Google Scholar 

  6. Dedieu N, Silva Vieira M, Fenton M, Wong J, Botnar R, Burch M, Greil G, Hussain T (2018) The importance of qualitative and quantitative regional wall motion abnormality assessment at rest in pediatric coronary allograft vasculopathy. Pediatr Transplant Pediatr Transplant 22:e13208

    Article  PubMed  Google Scholar 

  7. Erbel C, Mukhammadaminova N, Gleissner CA, Osman NF, Hofmann NP, Steuer C, Akhavanpoor M, Wangler S, Celik S, Doesch AO, Voss A, Buss SJ, Schnabel PA, Katus HA, Korosoglou G (2016) Myocardial perfusion reserve and strain-encoded CMR for evaluation of cardiac allograft microvasculopathy. JACC Cardiovasc Imaging 9:255–266

    Article  PubMed  Google Scholar 

  8. Shenoy C, Romano S, Hughes A, Okasha O, Nijjar PS, Velangi P, Martin CM, Akçakaya M, Farzaneh-Far A (2020) Cardiac magnetic resonance feature tracking global longitudinal strain and prognosis after heart transplantation. JACC Cardiovasc Imaging 13:1934–1942

    Article  PubMed  PubMed Central  Google Scholar 

  9. Eleid MF, Caracciolo G, Cho EJ et al (2010) Natural history of left ventricular mechanics in transplanted hearts: relationships with clinical variables and genetic expression profiles of allograft rejection. J Am Coll Cardiol Img 3:989–1000

    Article  Google Scholar 

  10. Sato T, Kato TS, Kamamura K et al (2011) Utility of left ventricular systolic torsion derived from 2-dimensional speckle-tracking echocardiography in monitoring acute cellular rejection in heart transplant recipients. J Heart Lung Transplant 30:536–543

    Article  PubMed  Google Scholar 

  11. Mingo-Santos S, Moñivas-Palomero V, Garcia-Lunar I et al (2015) Usefulness of two-dimensional strain parameters to diagnose acute rejection after heart transplantation. J Am Soc Echocardiogr 28:1149–1156

    Article  PubMed  Google Scholar 

  12. Clemmensen TS, Løgstrup BB, Eiskjær H, Poulsen SH (2015) Evaluation of longitudinal myocardial deformation by 2-dimensional speckle-tracking echocardiography in heart transplant recipients: relation to coronary allograft vasculopathy. J Heart Lung Transplant 34(2):195–203

    Article  PubMed  Google Scholar 

  13. Clemmensen TS, Eiskjær H, Løgstrup BB, Tolbod LP, Harms HJ, Bouchelouche K, Hoff C, Frøkiær J, Poulsen SH (2016) Noninvasive detection of cardiac allograft vasculopathy by stress exercise echocardiographic assessment of myocardial deformation. J Am Soc Echocardiogr 29:480–490

    Article  PubMed  Google Scholar 

  14. Ghali MCZ, Stewart R, Ghali GZ, Blitzer W (2020) Two dimensional speckle tracking echocardiography detects cardiac allograft stage III vasculopathy in recipients of heart transplants with preserved systolic function. Acta Cardiol 31:1–11

    Google Scholar 

  15. Dandel M, Lehmkuhl H, Knosalla C, Grauhan O, Weng Y, Pasic M, Hetzer R (2008) Echocardiographic 2D-strain imaging for early detection of patients with focal coronary stenoses after heart transplantation. J Heart Lung Transplant 27(2 Suppl 1):S95-96

    Article  Google Scholar 

  16. Logstrup BB, Hofsten DE, Christophersen TB et al (2012) Correlation between left ventricular global and regional longitudinal systolic strain and impaired microcirculation in patients with acute myocardial infarction. Echocardiography 10:1181–1190

    Article  Google Scholar 

  17. Mizuguchi Y, Oishi Y, Miyoshi H, Iuchi A, Nagase N, Oki T (2008) The functional role of longitudinal, circumferential, and radial myocardial deformation for regulating the early impairment of left ventricular contraction and relaxation in patients with cardiovascular risk factors: a study with two-dimensional strain imaging. J Am Soc Echocardiogr 21:1138–1144

    Article  PubMed  Google Scholar 

  18. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28(1):1-39.e14

    Article  PubMed  Google Scholar 

  19. Olymbios M, Kwiecinski J, Berman DS, Kobashigawa JA (2018) Imaging in heart transplant patients. JACC Cardiovasc Imaging 11(10):1514–1530

    Article  PubMed  Google Scholar 

  20. Cohn JM, Wilensky RL, O’Donnell JA, Bourdillon PDV, Dillon JC, Feigenbaum H (1996) Exercise echocardiography, angiography, and intracoronary ultrasound after cardiac transplantation. Am J Cardiol 77:1216–1219

    Article  CAS  PubMed  Google Scholar 

  21. Akosah KO, Mohanty PK, Funai JT et al (1994) Noninvasive detection of transplant coronary artery disease by dobutamine stress echocardiography. J Heart Lung Transplant 13:1024–1038

    CAS  PubMed  Google Scholar 

  22. Derumeaux G, Redonnet M, Soyer R, Cribier A, Letac B (1998) Assessment of the progression of cardiac allograft vasculopathy by dobutamine stress echocardiography. J Heart Lung Transplant 17:259–267

    CAS  PubMed  Google Scholar 

  23. Chirakarnjanakorn S, Starling RC, Popovic ZB, Griffin BP, Desai MY (2015) Dobutamine stress echocardiography during follow-up surveillance in heart transplant patients: diagnostic accuracy and predictors of outcomes. J Heart Lung Transplant 34:710–717

    Article  PubMed  Google Scholar 

  24. Clerkin KJ, Farr MA, Restaino SW, Ali ZA, Mancini DM (2016) Dobutamine stress echocardiography is inadequate to detect early cardiac allograft vasculopathy. J Heart Lung Transplant 35:1040–1041

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dandel M, Hetzer R (2017) Post-transplant surveillance for acute rejection and allograft vasculopathy by echocardiography: usefulness of myocardial velocity and deformation imaging. J Heart Lung Transplant 36:117–131

    Article  PubMed  Google Scholar 

  26. Cameli M, Mandoli GE, Sciaccaluga C, Mondillo S (2019) More than 10 years of speckle tracking echocardiography: still a novel technique or a definite tool for clinical practice? Echocardiography 36(5):958–970

    Article  PubMed  Google Scholar 

  27. Choi JO, Cho SW, Song YB, Cho SJ, Song BG, Lee SC, Park SW (2009) Longitudinal 2D strain at rest predicts the presence of left main and three vessel coronary artery disease in patients without regional wall motion abnormality. Eur J Echocardiogr 10(5):695–701

    Article  PubMed  Google Scholar 

  28. Biering-Sorensen T, Hoffmann S, Mogelvang R, Zeeberg Iversen A, Galatius S, Fritz-Hansen T, Bech J, Jensen JS (2014) Myocardial strain analysis by 2-dimensional speckle tracking echocardiography improves diagnostics of coronary artery stenosis in stable angina pectoris. Circ Cardiovasc Imaging 7(1):58–65

    Article  PubMed  Google Scholar 

  29. Shimoni S, Gendelman G, Ayzenberg O, Smirin N, Lysyansky P, Edri O, Deutsch L, Caspi A, Friedman Z (2011) Differential effects of coronary artery stenosis on myocardial function: the value of myocardial strain analysis for the detection of coronary artery disease. J Am Soc Echocardiogr 24(7):748–757

    Article  PubMed  Google Scholar 

  30. Nucifora G, Schuijf JD, Delgado V, Bertini M, Scholte AJ, Ng AC, van Werkhoven JM, Jukema JW, Holman ER, van der Wall EE, Bax JJ (2010) Incremental value of subclinical left ventricular systolic dysfunction for the identification of patients with obstructive coronary artery disease. Am Heart J 159(1):148–157

    Article  PubMed  Google Scholar 

  31. Myers JH, Stirling MC, Choy M, Buda AJ, Gallagher KP (1986) Direct measurement of inner and outer wall thickening dynamics with epicardial echocardiography. Circulation 74(1):164–172

    Article  CAS  PubMed  Google Scholar 

  32. Sabbah HN, Marzilli M, Stein PD (1981) The relative role of subendocardium and subepicardium in left ventricular mechanics. Am J Physiol 240(6):H920–H926

    CAS  PubMed  Google Scholar 

  33. Kim SA, Park SM, Kim MN, Shim WJ (2016) Assessment of left ventricular function by layer-specific strain and its relationship to structural remodelling in patients with hypertension. Can J Cardiol 32(2):211–216

    Article  PubMed  Google Scholar 

  34. Sarvari SI, Haugaa KH, Zahid W, Bendz B, Aakhus S, Aaberge L, Edvardsen T (2013) Layer-specific quantification of myocardial deformation by strain echocardiography may reveal significant CAD in patients with non-ST-segment elevation acute coronary syndrome. JACC Cardiovasc Imaging 6(5):535–544

    Article  PubMed  Google Scholar 

  35. Zhang L, Wu WC, Ma H, Wang H (2016) Usefulness of layer-specific strain for identifying complex CAD and predicting the severity of coronary lesions in patients with non-ST-segment elevation acute coronary syndrome: compared with Syntax score. Int J Cardiol 223:1045–1052

    Article  PubMed  Google Scholar 

  36. Leitman M, Lysiansky M, Lysyansky P, Friedman Z, Tyomkin V, Fuchs T, Adam D, Krakover R, Vered Z (2010) Circumferential and longitudinal strain in 3 myocardial layers in normal subjects and in patients with regional left ventricular dysfunction. J Am Soc Echocardiogr 23(1):64–70

    Article  PubMed  Google Scholar 

  37. Chih S, Chong AY, Mielniczuk LM, Bhatt DL, Beanlands RS (2016) Allograft vasculopathy: the Achilles’ heel of heart transplantation. J Am Coll Cardiol 68(1):80–91

    Article  PubMed  Google Scholar 

  38. Weber BN, Kobashigawa JA, Givertz MM (2017) Evolving areas in heart transplantation. JACC Heart Fail 5(12):869–878

    Article  PubMed  Google Scholar 

  39. Cameli M, Sciaccaluga C, Loiacono F, Simova I, Miglioranza MH, Nistor D, Bandera F, Emdin M, Giannoni A, Ciccone MM, Devito F, Guaricci AI, Favale S, Lisi M, Mandoli GE, Henein M, Mondillo S (2019) The analysis of left atrial function predicts the severity of functional impairment in chronic heart failure: The FLASH multicenter study. Int J Cardiol 286:87–91

    Article  PubMed  Google Scholar 

  40. Cameli M, Sciaccaluga C, Mandoli GE, D’Ascenzi F, Tsioulpas C, Mondillo S (2019) The role of the left atrial function in the surgical management of aortic and mitral valve disease. Echocardiography 36(8):1559–1565

    Article  PubMed  Google Scholar 

  41. Sciaccaluga C, D’Ascenzi F, Mandoli GE, Rizzo L, Sisti N, Carrucola C, Cameli P, Bigio E, Mondillo S, Cameli M (2020) Traditional and Novel Imaging of Right Ventricular Function in Patients with Heart Failure and Reduced Ejection Fraction. Curr Heart Fail Rep 17(2):28–33

    Article  CAS  PubMed  Google Scholar 

  42. Badano LP, Miglioranza MH, Edvardsen T et al (2015) European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of Cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation. Eur Heart J Cardiovasc Imaging 16:919–948

    Article  PubMed  Google Scholar 

  43. Lopez B, Sanchez V, Delgado JF et al (2012) Accuracy of noninvasive estimation of pulmonary wedge pressure by echocardiographic indices in heart transplant recipients. Transplant Proc 44:2639–2641

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CS, GEM, NS, MBN, AI, DM, SV, SM, MC, MF: takes responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation. AD’, GD: takes responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation. GB: takes responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation. SB, MM: This author takes responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.

Corresponding author

Correspondence to C. Sciaccaluga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest and that they have not received any funding grants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1880 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sciaccaluga, C., Mandoli, G.E., Sisti, N. et al. Detection of cardiac allograft vasculopathy by multi-layer left ventricular longitudinal strain in heart transplant recipients. Int J Cardiovasc Imaging 37, 1621–1628 (2021). https://doi.org/10.1007/s10554-020-02147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-02147-2

Keywords

Navigation