Skip to main content
Log in

Prognostic value and clinical predictors of intramyocardial hemorrhage measured by CMR T2* sequences in STEMI

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Recent studies show that microvascular injury consists of microvascular obstruction (MVO) and intramyocardial hemorrhage (IMH). In patients with reperfused ST-segment elevation myocardial infarction (STEMI) quantitative assessment of IMH with T2* cardiovascular magnetic resonance imaging (CMR) appears to be useful in evaluation of microvascular damage. The current study aimed to investigate feasibility of this approach and to correlate IMH with clinical and CMR parameters. A single center observational cohort study was performed in reperfused STEMI patients with CMR examination 7 days (IQR: 5 to 8 days) after percutaneous coronary intervention. Infarct size (IS) and MVO were evaluated in short-axis late gadolinium enhancement sequences and IMH with whole LV volume T2* mapping sequences. Of the 94 patients, MVO was identified in 52% of patients and the median size of MVO was 3% of LV mass (IQR: 1.5 to 5.4%). IMH was present in 28% of patients and the median size of IMH was 1.1% of LV mass (IQR: 0.5 to 2.9%). IMH extent was independently associated with anterior myocardial infarction (p = 0.022) and thrombectomy (p = 0.049). IMH was correlated with MVO (R = 0.62, p < 0.001), necrosis (R = 0.58, p < 0.001) and LVEF (R = -0.21, p = 0.04). Patients with IMH presented higher incidence of MACE events, independently of LVEF (p = 0.022). T2* mapping is a novel imaging approach that proves useful to asses IMH in the setting of reperfused STEMI. T2* IMH extent was associated with anterior infarction and thrombectomy. T2* IMH was associated with higher incidence of MACE events regardless preserved or reduced LVEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CMR:

Cardiac magnetic resonance

IMH:

Intramyocardial hemorrhage

IS:

Infarct size

LGE:

Late gadolinium enhancement sequence

LV:

Left ventricular

LVEF:

Left ventricular ejection fraction

MACE:

Major adverse cardiovascular events

MVO:

Microvascular obstruction

PCI:

Percutaneous coronary intervention

STEMI:

ST-segment elevation myocardial infarction

TIMI:

Thrombolysis in Myocardial Infarction

References

  1. Ibanez B, James S, Agewall S et al (2018) 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 39(2):119–177. https://doi.org/10.1093/eurheartj/ehx393

    Article  Google Scholar 

  2. Zhao B, Li J, Luo X, Zhou Q, Chen H, Shi H (2011) The role of von willebrand factor and ADAMTS13 in the no-reflow phenomenon: after primary percutaneous coronary intervention. Tex Heart Inst J 38(5):516

    PubMed  PubMed Central  Google Scholar 

  3. Konijnenberg LSF, Damman P, Duncker DJ et al (2019) Pathophysiology and diagnosis of coronary microvascular dysfunction in ST-elevation myocardial infarction. Cardiovasc Res 116(4):787–805. https://doi.org/10.1093/cvr/cvz301

    Article  CAS  PubMed Central  Google Scholar 

  4. Fröhlich GM, Meier P, White SK, Yellon DM, Hausenloy DJ (2013) Myocardial reperfusion injury: looking beyond primary PCI. Eur Heart J 34(23):1714–1724. https://doi.org/10.1093/eurheartj/eht090

    Article  CAS  PubMed  Google Scholar 

  5. Sezer M, Van Royen N, Umman B et al (2018) Coronary microvascular injury in reperfused acute myocardial infarction: a view from an integrative perspective. J Am Heart Assoc. https://doi.org/10.1161/JAHA.118.009949

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jaffe R, Charron T, Puley G, Dick A, Strauss BH (2008) Microvascular obstruction and the no-reflow phenomenon after percutaneous coronary intervention. Circulation 117(24):3152–3156. https://doi.org/10.1161/CIRCULATIONAHA.107.742312

    Article  PubMed  Google Scholar 

  7. Jaffe R, Dick A, Strauss BH (2010) Prevention and treatment of microvascular obstruction-related myocardial injury and coronary no-reflow following percutaneous coronary intervention: a systematic approach. JACC Cardiovasc Interv 3(7):695–704. https://doi.org/10.1016/j.jcin.2010.05.004

    Article  PubMed  Google Scholar 

  8. Betgem RP, de Waard GA, Nijveldt R, Beek AM, Escaned J, van Royen N (2014) Intramyocardial haemorrhage after acute myocardial infarction. Nat Rev Cardiol 12(3):156–167. https://doi.org/10.1038/nrcardio.2014.188

    Article  PubMed  Google Scholar 

  9. Van Kranenburg M, Magro M, Thiele H et al (2014) Prognostic value of microvascular obstruction and infarct size, as measured by CMR in STEMI patients. JACC Cardiovasc Imaging 7(9):930–939. https://doi.org/10.1016/j.jcmg.2014.05.010

    Article  PubMed  Google Scholar 

  10. Eitel I, De Waha S, Wöhrle J et al (2014) Comprehensive prognosis assessment by CMR imaging after ST-segment elevation myocardial infarction. J Am Coll Cardiol 64(12):1217–1226. https://doi.org/10.1016/j.jacc.2014.06.1194

    Article  PubMed  Google Scholar 

  11. Reindl M, Tiller C, Holzknecht M et al (2020) Association of myocardial injury with serum procalcitonin levels in patients with ST-elevation myocardial infarction. JAMA Netw open 3(6):e207030. https://doi.org/10.1001/jamanetworkopen.2020.7030

    Article  PubMed  PubMed Central  Google Scholar 

  12. Husser O, Monmeneu JV, Sanchis J et al (2013) Cardiovascular magnetic resonance-derived intramyocardial hemorrhage after STEMI: influence on long-term prognosis, adverse left ventricular remodeling and relationship with microvascular obstruction. Int J Cardiol 167(5):2047–2054. https://doi.org/10.1016/j.ijcard.2012.05.055

    Article  PubMed  Google Scholar 

  13. Carrick D, Haig C, Ahmed N et al (2016) Myocardial hemorrhage after acute reperfused ST-segment-elevation myocardial infarction: relation to microvascular obstruction and prognostic significance. Circ Cardiovasc Imaging 9:e004148. https://doi.org/10.1161/CIRCIMAGING.115.004148

    Article  PubMed  PubMed Central  Google Scholar 

  14. Reinstadler SJ, Stiermaier T, Reindl M et al (2019) Intramyocardial haemorrhage and prognosis after ST-elevation myocardial infarction. Eur Heart J Cardiovasc Imaging 20:138–146. https://doi.org/10.1093/ehjci/jey101

    Article  PubMed  Google Scholar 

  15. Beek AM, Nijveldt R, Van Rossum AC (2010) Intramyocardial hemorrhage and microvascular obstruction after primary percutaneous coronary intervention. Int J Cardiovasc Imaging 26(1):49–55. https://doi.org/10.1007/s10554-009-9499-1

    Article  CAS  PubMed  Google Scholar 

  16. Kali A, Tang RLQ, Kumar A, Min JK, Dharmakumar R (2013) Detection of acute reperfusion myocardial hemorrhage with cardiac MR imaging: T2 versus T2. Radiology 269(2):387–395. https://doi.org/10.1148/radiol.13122397

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hansen ESS, Pedersen SF, Pedersen SB et al (2016) Cardiovascular MR T2-STIR imaging does not discriminate between intramyocardial haemorrhage and microvascular obstruction during the subacute phase of a reperfused myocardial infarction. Open Hear 3(1):e000346. https://doi.org/10.1136/openhrt-2015-000346

    Article  Google Scholar 

  18. van `t Hof WJ, Liem A, Suryapranata H, Hoorntje JC, de Boer MJ, Zijlstra F 1998 Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction : myocardial blush grade. Circulation. 97(23):2302-2306. Doi:https://doi.org/10.1161/01.CIR.97.23.2302

  19. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E (2013) Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson 15(1):91. https://doi.org/10.1186/1532-429X-15-91

    Article  PubMed  PubMed Central  Google Scholar 

  20. Flett AS, Hasleton J, Cook C et al (2011) Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovasc Imaging 4(2):150–156. https://doi.org/10.1016/j.jcmg.2010.11.015

    Article  PubMed  Google Scholar 

  21. Payne AR, Casey M, McClure J et al (2011) Bright-blood T2-weighted MRI has higher diagnostic accuracy than dark-blood short tau inversion recovery MRI for detection of acute myocardial infarction and for assessment of the ischemic area at risk and myocardial salvage. Circ Cardiovasc Imaging 4(3):210–219. https://doi.org/10.1161/CIRCIMAGING.110.960450

    Article  PubMed  Google Scholar 

  22. Anderson LJ, Holden S, Davis B et al (2001) Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 22(23):2171–2179. https://doi.org/10.1053/euhj.2001.2822

    Article  CAS  PubMed  Google Scholar 

  23. Robbers LFHJ, Eerenberg ES, Teunissen PFA et al (2013) Magnetic resonance imaging-defined areas of microvascular obstruction after acute myocardial infarction represent microvascular destruction and haemorrhage. Eur Heart J. https://doi.org/10.1093/eurheartj/eht100

    Article  PubMed  Google Scholar 

  24. Eitel I, Kubusch K, Strohm O et al (2011) Prognostic value and determinants of a hypointense infarct core in T2-weighted cardiac magnetic resonance in acute reperfused ST-elevation- myocardial infarction. Circ Cardiovasc Imaging 4(4):354–362. https://doi.org/10.1161/CIRCIMAGING.110.960500

    Article  PubMed  Google Scholar 

  25. Carrick D, Haig C, Rauhalammi S et al (2016) Prognostic significance of infarct core pathology revealed by quantitative non-contrast in comparison with contrast cardiac magnetic resonance imaging in reperfused ST-elevation myocardial infarction survivors. Eur Heart J 37(13):1044–1059. https://doi.org/10.1093/eurheartj/ehv372

    Article  PubMed  Google Scholar 

  26. Hamirani YS, Wong A, Kramer CM, Salerno M (2014) Effect of microvascular obstruction and intramyocardial hemorrhage by CMR on LV remodeling and outcomes after myocardial infarction: a systematic review and meta-analysis. JACC Cardiovasc Imaging 7(9):940–952. https://doi.org/10.1016/j.jcmg.2014.06.012

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hadamitzky M, Langhans B, Hausleiter J et al (2013) The assessment of area at risk and myocardial salvage after coronary revascularization in acute myocardial infarction: comparison between CMR and SPECT. JACC Cardiovasc Imaging 6(3):358–369. https://doi.org/10.1016/j.jcmg.2012.10.018

    Article  PubMed  Google Scholar 

  28. Arheden H (2016) Intramyocardial hemorrhage in acute myocardial infarction: prognostic biomarker and treatment target? Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.115.004418

    Article  PubMed  Google Scholar 

  29. Amier RP, Tijssen RYG, Teunissen PFA et al (2017) Predictors of intramyocardial hemorrhage after reperfused ST-segment elevation myocardial infarction. J Am Heart Assoc 6(8):e005651. https://doi.org/10.1161/JAHA.117.005651

    Article  PubMed  PubMed Central  Google Scholar 

  30. Movahed MR, John J, Hashemzadeh M, Jamal MM, Hashemzadeh M (2009) Trends in the age adjusted mortality from acute ST segment elevation myocardial infarction in the United States (1988–2004) based on race, gender, infarct location and comorbidities. Am J Cardiol 104(8):1030–1034. https://doi.org/10.1016/j.amjcard.2009.05.051

    Article  PubMed  Google Scholar 

  31. McGeoch R, Watkins S, Berry C et al (2010) The index of microcirculatory resistance measured acutely predicts the extent and severity of myocardial infarction in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 3(7):715–722. https://doi.org/10.1016/j.jcin.2010.04.009

    Article  PubMed  Google Scholar 

  32. Carberry J, Carrick D, Haig C et al (2018) Persistent iron within the infarct core after ST-segment elevation myocardial infarction: implications for left ventricular remodeling and health outcomes. JACC Cardiovasc Imaging 11(9):1248–1256. https://doi.org/10.1016/j.jcmg.2017.08.027

    Article  PubMed  PubMed Central  Google Scholar 

  33. Crea F, Camici PG, Merz CNB (2014) Coronary microvascular dysfunction: an update. Eur Heart J. https://doi.org/10.1093/eurheartj/eht513

    Article  PubMed  Google Scholar 

  34. Ganame J, Messalli G, Dymarkowski S et al (2009) Impact of myocardial haemorrhage on left ventricular function and remodelling in patients with reperfused acute myocardial infarction. Eur Heart J 30(12):1440–1449. https://doi.org/10.1093/eurheartj/ehp093

    Article  PubMed  Google Scholar 

  35. Betgem RP, De Waard GA, Nijveldt R, Beek AM, Escaned J, Van Royen N (2015) Intramyocardial haemorrhage after acute myocardial infarction. Nat Rev Cardiol 12(3):156–167. https://doi.org/10.1038/nrcardio.2014.188

    Article  PubMed  Google Scholar 

  36. Kidambi A, Biglands JD, Higgins DM et al (2014) Susceptibility-weighted cardiovascular magnetic resonance in comparison to T2 and T2 star imaging for detection of intramyocardial hemorrhage following acute myocardial infarction at 3 tesla. J Cardiovasc Magn Reson 16(1):86. https://doi.org/10.1186/s12968-014-0086-9

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bulluck H, Chowdhury N, Lim MX et al (2020) Feasibility to perform T2* mapping postcontrast administration in reperfused STEMI patients for the detection of intramyocardial hemorrhage. J Magn Reson Imaging 51:644–645. https://doi.org/10.1002/jmri.26779

    Article  PubMed  Google Scholar 

  38. Bekkers SCAM, Smulders MW, Passos VL et al (2010) Clinical implications of microvascular obstruction and intramyocardial haemorrhage in acute myocardial infarction using cardiovascular magnetic resonance imaging. Eur Radiol 20(11):2572–2578. https://doi.org/10.1007/s00330-010-1849-9

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rezkalla SH, Kloner RA (2002) No-reflow phenomenon. Circulation 105(5):656–662. https://doi.org/10.1161/hc0502.102867

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was provided.

Author information

Authors and Affiliations

Authors

Contributions

MFV, ESL, BIM, designed research; MFV, ESL, DPL, JLDG, PSS, collection of data; DPL, JLDG, PSS, interpretation of data; MFV, ESL, BIM, writing the manuscript; MFV, ESL, CGC, AMG, VMP, AMA, LMD, BIM, revised the manuscript. “All authors have read and approved the manuscript”.

Corresponding author

Correspondence to Maria Ferré-Vallverdú.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The study protocol was approved by the local ethics committee (Comité Ético de Investigación Clínica (CEIC) Hospital Universitari i Politècnic La Fe, Valencia). All patients gave written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferré-Vallverdú, M., Sánchez-Lacuesta, E., Plaza-López, D. et al. Prognostic value and clinical predictors of intramyocardial hemorrhage measured by CMR T2* sequences in STEMI. Int J Cardiovasc Imaging 37, 1735–1744 (2021). https://doi.org/10.1007/s10554-020-02142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-02142-7

Keywords

Navigation