Skip to main content

Advertisement

Log in

Serial magnetic resonance imaging detects a rapid reduction in plaque lipid content under PCSK9 inhibition with alirocumab

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

PCSK9 inhibitors lower low-density lipoprotein cholesterol (LDL-C) and reduce cardiovascular events. The clinical benefits presumably result from favorable effects on atherosclerotic plaques. Lipid-core and plaque inflammation have been recognized as main determinants of risk for plaque rupture and cardiovascular events. Both can be noninvasively assessed with carotid MRI. We studied if PCSK9 inhibition with alirocumab induces regression in lipid-core or plaque inflammation within 6 months as measured by MRI. Patients with non-calcified carotid plaque(s) and baseline LDL-C ≥ 70 mg/dl, who were statin-intolerant or taking a low-dose statin (≤ 10 mg per day of atorvastatin or an equivalent), received subcutaneous alirocumab 150 mg every 2 weeks. Carotid MRI was performed at baseline and 6 months after treatment, including pre- and post-contrast images for measuring percent lipid-core volume (%LC) and dynamic contrast-enhanced images for measuring microvessel leakiness (Ktrans), a marker of inflammation. Twenty-eight patients completed the study (69 ± 9 years; 64% male). Alirocumab led to significant changes in LDL-C (p < 0.001) and high-density lipoprotein cholesterol (HDL-C) (p = 0.003). At 6 months, there was a significant reduction in %LC (mean: − 2.1% [− 3.5, − 0.7], p = 0.005; a 17% reduction from baseline of 9.9%) without significant changes in lumen/wall area or in the inflammatory index Ktrans. Carotid plaque lipid content was reduced by 17% after 6 months of PCSK9 inhibition with alirocumab. This was seen before observable changes in lumen or wall areas, which supports pursing plaque lipid content as a more sensitive marker of therapeutic response compared to lumen or wall areas in future technical developments and serial studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

All data are available upon requests.

Abbreviations

ASCVD:

Atherosclerotic cardiovascular disease

CEA:

Carotid endarterectomy

DCE:

Dynamic contrast-enhanced

HDL-C:

High-density lipoprotein cholesterol

hsCRP:

High-sensitivity C-reactive protein

IPH:

Intraplaque hemorrhage

IQR:

Interquartile range

LDL-C:

Low-density lipoprotein cholesterol

LRNC:

Lipid-rich necrotic core

PCSK9:

Proprotein convertase subtilisin/kexin type 9

References

  1. Grundy SM, Stone NJ, Bailey AL et al (2019) 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol. Circulation 139:e1082–e1143

    Google Scholar 

  2. Sabatine MS, Giugliano RP, Keech AC et al (2017) Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 376:1713–1722

    Article  CAS  Google Scholar 

  3. Schwartz GG, Steg PG, Szarek M et al (2018) Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med 379:2097–2107

    Article  CAS  Google Scholar 

  4. Arbab-Zadeh A, Nakano M, Virmani R, Fuster V (2012) Acute coronary events. Circulation 125:1147–1156

    Article  Google Scholar 

  5. Narula J, Nakano M, Virmani R et al (2013) Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol 61:1041–1051

    Article  Google Scholar 

  6. Cai JM, Hatsukami TS, Ferguson MS et al (2005) In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation 112:3437–3444

    Article  Google Scholar 

  7. Wasserman BA, Smith WI, Trout HH, Cannon RO, Balaban RS, Arai AE (2002) Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging–initial results. Radiology 223:566–573

    Article  Google Scholar 

  8. Trivedi RA, U-King-Im J, Graves MJ et al (2004) Multi-sequence in vivo MRI can quantify fibrous cap and lipid core components in human carotid atherosclerotic plaques. Eur J Vasc Endovasc Surg 28:207–213

    Article  CAS  Google Scholar 

  9. Kerwin WS, O’Brien KD, Ferguson MS, Polissar N, Hatsukami TS, Yuan C (2006) Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology 241:459–468

    Article  Google Scholar 

  10. Gaens ME, Backes WH, Rozel S et al (2013) Dynamic contrast-enhanced MR imaging of carotid atherosclerotic plaque: model selection, reproducibility, and validation. Radiology 266:271–279

    Article  Google Scholar 

  11. Taqueti VR, Di Carli MF, Jerosch-Herold M et al (2014) Increased microvascularization and vessel permeability associate with active inflammation in human atheromata. Circ Cardiovasc Imaging 7:920–929

    Article  Google Scholar 

  12. Zavodni AE, Wasserman BA, McClelland RL et al (2014) Carotid artery plaque morphology and composition in relation to incident cardiovascular events: the Multi-Ethnic Study of Atherosclerosis (MESA). Radiology 271:381–389

    Article  Google Scholar 

  13. Sun J, Zhao XQ, Balu N et al (2017) Carotid plaque lipid content and fibrous cap status predict systemic CV outcomes: the MRI substudy in AIM-HIGH. JACC Cardiovasc Imaging 10:241–249

    Article  Google Scholar 

  14. Honda O, Sugiyama S, Kugiyama K et al (2004) Echolucent carotid plaques predict future coronary events in patients with coronary artery disease. J Am Coll Cardiol 43:1177–1184

    Article  Google Scholar 

  15. Ogata A, Oho K, Matsumoto N et al (2019) Stabilization of vulnerable carotid plaques with proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab. Acta Neurochir (Wien) 161:597–600

    Article  Google Scholar 

  16. Sun J, Balu N, Hippe DS et al (2013) Subclinical carotid atherosclerosis: short-term natural history of lipid-rich necrotic core—a multicenter study with MR imaging. Radiology 268:61–68

    Article  Google Scholar 

  17. Underhill HR, Yuan C, Zhao XQ et al (2008) Effect of rosuvastatin therapy on carotid plaque morphology and composition in moderately hypercholesterolemic patients: a high-resolution magnetic resonance imaging trial. Am Heart J 155:581–584

    Article  Google Scholar 

  18. Sun J, Zhao XQ, Balu N et al (2015) Carotid magnetic resonance imaging for monitoring atherosclerotic plaque progression: a multicenter reproducibility study. Int J Cardiovasc Imaging 31:95–103

    Article  Google Scholar 

  19. Kerwin WS, Xu D, Liu F et al (2007) Magnetic resonance imaging of carotid atherosclerosis: plaque analysis. Top Magn Reson Imaging 18:371–378

    Article  Google Scholar 

  20. Takaya N, Cai JM, Ferguson MS et al (2006) Intra- and interreader reproducibility of magnetic resonance imaging for quantifying the lipid-rich necrotic core is improved with gadolinium contrast enhancement. J Magn Reson Imaging 24:203–210

    Article  Google Scholar 

  21. Dong L, Kerwin WS, Chen H et al (2011) Carotid artery atherosclerosis: effect of intensive lipid therapy on the vasa vasorum-evaluation by using dynamic contrast-enhanced MR imaging. Radiology 260:224–231

    Article  Google Scholar 

  22. Kerwin WS, Oikawa M, Yuan C, Jarvik GP, Hatsukami TS (2008) MR imaging of adventitial vasa vasorum in carotid atherosclerosis. Magn Reson Med 59:507–514

    Article  CAS  Google Scholar 

  23. Gupta A, Baradaran H, Schweitzer AD et al (2013) Carotid plaque MRI and stroke risk: a systematic review and meta-analysis. Stroke 44:3071–3077

    Article  Google Scholar 

  24. Zhao XQ, Dong L, Hatsukami T et al (2011) MR imaging of carotid plaque composition during lipid-lowering therapy: a prospective assessment of effect and time course. J Am Coll Cardiol Img 4:977–986

    Article  Google Scholar 

  25. Brinjikji W, Lehman VT, Kallmes DF et al (2017) The effects of statin therapy on carotid plaque composition and volume: a systematic review and meta-analysis. J Neuroradiol 44:234–240

    Article  Google Scholar 

  26. Hoogeveen RM, Opstal TSJ, Kaiser Y et al (2019) PCSK9 Antibody alirocumab attenuates arterial wall inflammation without changes in circulating inflammatory markers. JACC Cardiovasc Imaging 12:2571–2573

  27. Vlachopoulos C, Koutagiar I, Skoumas I et al (2019) Long-term administration of proprotein convertase subtilisin/kexin type 9 inhibitors reduces arterial FDG uptake. JACC Cardiovasc Imaging 12:2573–2574

    Article  Google Scholar 

  28. Banach M, Serban C, Sahebkar A et al (2015) Impact of statin therapy on coronary plaque composition: a systematic review and meta-analysis of virtual histology intravascular ultrasound studies. BMC Med 13:229

    Article  Google Scholar 

  29. Andelius L, Mortensen MB, Norgaard BL, Abdulla J (2018) Impact of statin therapy on coronary plaque burden and composition assessed by coronary computed tomographic angiography: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging 19:850–858

    Article  Google Scholar 

  30. Kini AS, Baber U, Kovacic JC et al (2013) Changes in plaque lipid content after short-term intensive versus standard statin therapy: the YELLOW trial (reduction in yellow plaque by aggressive lipid-lowering therapy). J Am Coll Cardiol 62:21–29

    Article  CAS  Google Scholar 

  31. Crisby M, Nordin-Fredriksson G, Shah PK, Yano J, Zhu J, Nilsson J (2001) Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques—implications for plaque stabilization. Circulation 103:926–933

    Article  CAS  Google Scholar 

  32. Tsujita K, Sugiyama S, Sumida H et al (2015) Impact of dual lipid-lowering strategy with ezetimibe and atorvastatin on coronary plaque regression in patients with percutaneous coronary intervention: the multicenter randomized controlled PRECISE-IVUS trial. J Am Coll Cardiol 66:495–507

    Article  Google Scholar 

  33. Nicholls SJ, Puri R, Anderson T et al (2016) Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA 316:2373–2384

    Article  CAS  Google Scholar 

  34. Nicholls SJ, Puri R, Anderson T et al (2018) Effect of evolocumab on coronary plaque composition. J Am Coll Cardiol 72:2012–2021

    Article  CAS  Google Scholar 

  35. Stiekema LCA, Stroes ESG, Verweij SL et al (2019) Persistent arterial wall inflammation in patients with elevated lipoprotein(a) despite strong low-density lipoprotein cholesterol reduction by proprotein convertase subtilisin/kexin type 9 antibody treatment. Eur Heart J 40:2775–2781

    Article  CAS  Google Scholar 

  36. Calcagno C, Ramachandran S, Izquierdo-Garcia D et al (2013) The complementary roles of dynamic contrast-enhanced MRI and F-fluorodeoxyglucose PET/CT for imaging of carotid atherosclerosis. Eur J Nucl Med Mol Imaging 40:1884–1893

    Article  CAS  Google Scholar 

  37. Truijman MTB, Kwee RM, van Hoof RHM et al (2013) Combined 18F-FDG PET-CT and DCE-MRI to assess inflammation and microvascularization in atherosclerotic plaques. Stroke 44:3568–3570

    Article  CAS  Google Scholar 

  38. Wang J, Liu H, Sun J et al (2014) Varying correlation between 18F-fluorodeoxyglucose positron emission tomography and dynamic contrast-enhanced MRI in carotid atherosclerosis: implications for plaque inflammation. Stroke 45:1842–1845

    Article  CAS  Google Scholar 

  39. Chai JT, Biasiolli L, Li L et al (2017) Quantification of lipid-rich core in carotid atherosclerosis using MRI T2 mapping—relation to clinical presentation. J Am Coll Cardiol Img 10:747–756

    Article  Google Scholar 

  40. Qi H, Sun J, Qiao H et al (2018) Simultaneous T1 and T2 mapping of the carotid plaque (SIMPLE) with T2 and inversion recovery prepared 3D radial imaging. Magn Reson Med 80:2598–2608

    Article  CAS  Google Scholar 

Download references

Funding

Funded by an investigator-initiated grant from Regeneron and Sanofi.

Author information

Authors and Affiliations

Authors

Contributions

(1) Study conception and design: JS, NEL, DSH, NB, CY, XQZ, TSH; (2) data acquisition: JS, NEL, GC, LC, DAI, IK, AAS; (3) data analysis: JS, DSH; (4) data interpretation: all authors; (5) manuscript preparation: JS, DSH; (6) manuscript revision: all authors; (7) approval of manuscript for submission: all authors.

Corresponding author

Correspondence to Jie Sun.

Ethics declarations

Conflict of interest

Norman E. Lepor: Speakers bureau: Amgen, Sanofi, and Regeneron; Research support: The Medicines Company, Esperion, Amgen, Sanofi, and Regeneron. Daniel S. Hippe: Research support: GE Healthcare, Philips Healthcare, Toshiba America Medical Systems, Siemens Medical Solutions USA. Chun Yuan: Research support: Philips Healthcare. Xue-Qiao Zhao: Research support: Amgen, AstraZeneca. Thomas S. Hatsukami: Research support: Philips Healthcare. Other authors have reported that they have no relationships relevant to the contents of this paper to disclose.

Consent to participate

All study participants provided informed consent.

Consent for publication

All authors have seen and approved the manuscript being submitted.

Ethical approval

Approved by the Western Institutional Review Board.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Lepor, N.E., Cantón, G. et al. Serial magnetic resonance imaging detects a rapid reduction in plaque lipid content under PCSK9 inhibition with alirocumab. Int J Cardiovasc Imaging 37, 1415–1422 (2021). https://doi.org/10.1007/s10554-020-02115-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-02115-w

Keywords

Navigation