Skip to main content

Advertisement

Log in

Impact of clinical presentations on lipid core plaque assessed by near-infrared spectroscopy intravascular ultrasound

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Near-infrared spectroscopy-intravascular ultrasound (NIRS-IVUS) studies have demonstrated that lipid core plaque (LCP) is frequently observed in the culprit segment of myocardial infarction (MI). However, little is known about the impact of clinical presentations such as chronic coronary syndrome (CCS) and acute coronary syndrome (ACS) including unstable angina (UA), non ST-segment elevation MI (NSTEMI), and ST-segment elevation MI (STEMI) on LCP. The present prospective single-center registry included a total of 178 patients who underwent percutaneous coronary intervention under NIRS-IVUS guidance. Patients were divided into CCS and ACS groups, and ACS patients were further sub-divided into the 3 groups according to the clinical presentation. The primary endpoint was coronary LCP in the target lesion assessed by NIRS-IVUS with maximal lipid core burden index over any 4 mm segment (maxLCBI4mm). The study population included 124 and 54 patients with CCS and ACS. MaxLCBI4mm in the target lesion was significantly higher in the ACS group than in the CCS group (503 [284–672] vs. 406 [250–557], p = 0.046). Among ACS patients, MaxLCBI4mm in the target lesion was also significantly different in those with UA (n = 18), NSTEMI (n = 21), and STEMI (n = 15) (288 [162–524] vs. 518 [358–745] vs. 646 [394–848], p = 0.021). In conclusion, LCP assessed by NIRS-IVUS, a surrogate of coronary plaque vulnerability, was significantly different according to the clinical presentations such as CCS, UA, NSTEMI, and STEMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R (1997) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336:1276–1282

    Article  CAS  Google Scholar 

  2. Farb A, Tang AL, Burke AP, Sessums L, Liang Y, Virmani R (1995) Sudden coronary death. Frequency of active coronary lesions, inactive coronary lesions, and myocardial infarction. Circulation 92:1701–1709

    Article  CAS  Google Scholar 

  3. Maehara A, Mintz GS, Bui AB, Walter OR, Castagna MT, Canos D, Pichard AD, Satler LF, Waksman R, Suddath WO, Laird JR Jr, Kent KM, Weissman NJ (2002) Morphologic and angiographic features of coronary plaque rupture detected by intravascular ultrasound. J Am Coll Cardiol 40:904–910

    Article  Google Scholar 

  4. Ino Y, Kubo T, Tanaka A, Kuroi A, Tsujioka H, Ikejima H, Okouchi K, Kashiwagi M, Takarada S, Kitabata H, Tanimoto T, Komukai K, Ishibashi K, Kimura K, Hirata K, Mizukoshi M, Imanishi T, Akasaka T (2011) Difference of culprit lesion morphologies between ST-segment elevation myocardial infarction and non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study. JACC Cardiovasc Interv 4:76–82

    Article  Google Scholar 

  5. Gardner CM, Tan H, Hull EL, Lisauskas JB, Sum ST, Meese TM, Jiang C, Madden SP, Caplan JD, Burke AP, Virmani R, Goldstein J, Muller JE (2008) Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC Cardiovasc Imag 1:638–648

    Article  Google Scholar 

  6. Madder RD, Smith JL, Dixon SR, Goldstein JA (2012) Composition of target lesions by near-infrared spectroscopy in patients with acute coronary syndrome versus stable angina. Circ Cardiovasc Interv 5:55–61

    Article  Google Scholar 

  7. Madder RD, Goldstein JA, Madden SP, Puri R, Wolski K, Hendricks M, Sum ST, Kini A, Sharma S, Rizik D, Brilakis ES, Shunk KA, Petersen J, Weisz G, Virmani R, Nicholls SJ, Maehara A, Mintz GS, Stone GW, Muller JE (2013) Detection by near-infrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 6:838–846

    Article  Google Scholar 

  8. Madder RD, Husaini M, Davis AT, VanOosterhout S, Harnek J, Götberg M, Erlinge D (2015) Detection by near-infrared spectroscopy of large lipid cores at culprit sites in patients with non-ST-segment elevation myocardial infarction and unstable angina. Catheter Cardiovasc Interv 86:1014–1021

    Article  Google Scholar 

  9. Madder RD, Puri R, Muller JE, Harnek J, Götberg M, VanOosterhout S, Chi M, Wohns D, McNamara R, Wolski K, Madden S, Sidharta S, Andrews J, Nicholls SJ, Erlinge D (2016) Confirmation of the intracoronary near-infrared spectroscopy threshold of lipid-rich plaques that underlie st-segment-elevation myocardial infarction. Arterioscler Thromb Vasc Biol 36:1010–1015

    Article  CAS  Google Scholar 

  10. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD, Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction (2018) Fourth Universal Definition of Myocardial Infarction. J Am Coll Cardiol 72:2231–2264

    Article  Google Scholar 

  11. Braunwald E (1989) Unstable angina. A classification. Circulation 80:410–414

    Article  CAS  Google Scholar 

  12. Ozaki Y, Katagiri Y, Onuma Y, Amano T, Muramatsu T, Kozuma K, Otsuji S, Ueno T, Shiode N, Kawai K, Tanaka N, Ueda K, Akasaka T, Hanaoka KI, Uemura S, Oda H, Katahira Y, Kadota K, Kyo E, Sato K, Sato T, Shite J, Nakao K, Nishino M, Hikichi Y, Honye J, Matsubara T, Mizuno S, Muramatsu T, Inohara T, Kohsaka S, Michishita I, Yokoi H, Serruys PW, Ikari Y, Nakamura M, Task Force on Primary Percutaneous Coronary Intervention (PCI) of the Japanese Cardiovascular Interventional Therapeutics (CVIT) (2018) CVIT expert consensus document on primary percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI) in 2018. Cardiovasc Interv Ther 33(178):203

    Google Scholar 

  13. Mori N, Saito Y, Saito K, Matsuoka T, Tateishi K, Kadohira T, Kitahara H, Fujimoto Y, Kobayashi Y (2020) Relation of plasma xanthine oxidoreductase activity to coronary lipid core plaques assessed by near-infrared spectroscopy intravascular ultrasound in patients with stable coronary artery disease. Am J Cardiol 125:1006–1012

    Article  CAS  Google Scholar 

  14. Goldstein JA, Maini B, Dixon SR, Brilakis ES, Grines CL, Rizik DG, Powers ER, Steinberg DH, Shunk KA, Weisz G, Moreno PR, Kini A, Sharma SK, Hendricks MJ, Sum ST, Madden SP, Muller JE, Stone GW, Kern MJ (2011) Detection of lipid-core plaques by intracoronary near-infrared spectroscopy identifies high risk of periprocedural myocardial infarction. Circ Cardiovasc Interv 4:429–437

    Article  Google Scholar 

  15. Sonoda S, Hibi K, Okura H, Fujii K, Honda Y, Kobayashi Y (2020) Current clinical use of intravascular ultrasound imaging to guide percutaneous coronary interventions. Cardiovasc Interv Ther 35:30–36

    Article  Google Scholar 

  16. Saito Y, Kobayashi Y, Fujii K, Sonoda S, Tsujita K, Hibi K, Morino Y, Okura H, Ikari Y, Honye J (2020) Clinical expert consensus document on standards for measurements and assessment of intravascular ultrasound from the Japanese Association of Cardiovascular Intervention and Therapeutics. Cardiovasc Interv Ther 35:1–12

    Article  CAS  Google Scholar 

  17. Mintz GS (2020) Intravascular ultrasound guidance improves patient survival (mortality) after drug-eluting stent implantation: review and updated bibliography. Cardiovasc Interv Ther 35:37–43

    Article  CAS  Google Scholar 

  18. Sakai K, Ikari Y, Nanasato M, Umetsu H, Okutsu M, Takikawa T, Sumitsuji S, Sadamatsu K, Takada M, Kato Y, Ogasawara N, Otowa K (2019) Impact of intravascular ultrasound-guided minimum-contrast coronary intervention on 1-year clinical outcomes in patients with stage 4 or 5 advanced chronic kidney disease. Cardiovasc Interv Ther 34:234–241

    Article  CAS  Google Scholar 

  19. Narula J, Nakano M, Virmani R, Kolodgie FD, Petersen R, Newcomb R, Malik S, Fuster V, Finn AV (2013) Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol 61:1041–1051

    Article  Google Scholar 

  20. Madder RD, Husaini M, Davis AT, VanOosterhout S, Khan M, Wohns D, McNamara RF, Wolschleger K, Gribar J, Collins JS, Jacoby M, Decker JM, Hendricks M, Sum ST, Madden S, Ware JH, Muller JE (2016) Large lipid-rich coronary plaques detected by near-infrared spectroscopy at non-stented sites in the target artery identify patients likely to experience future major adverse cardiovascular events. Eur Heart J Cardiovasc Imag 17:393–399

    Article  Google Scholar 

  21. Waksman R, Di Mario C, Torguson R, Ali ZA, Singh V, Skinner WH, Artis AK, Cate TT, Powers E, Kim C, Regar E, Wong SC, Lewis S, Wykrzykowska J, Dube S, Kazziha S, van der Ent M, Shah P, Craig PE, Zou Q, Kolm P, Brewer HB, Garcia-Garcia HM, Investigators LRP (2019) Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study. Lancet 394:1629–1637

    Article  CAS  Google Scholar 

  22. Libby P (2013) Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med 368:2004–2013

    Article  CAS  Google Scholar 

  23. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R (2010) Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol 30:1282–1292

    Article  CAS  Google Scholar 

  24. Sakaguchi M, Ehara S, Hasegawa T, Matsumoto K, Nishimura S, Yoshikawa J, Shimada K (2017) Coronary plaque rupture with subsequent thrombosis typifies the culprit lesion of non-ST-segment-elevation myocardial infarction, not unstable angina: non-ST-segment-elevation acute coronary syndrome study. Heart Vessels 32:241–251

    Article  Google Scholar 

  25. Johnson TW, Räber L, di Mario C, Bourantas C, Jia H, Mattesini A, Gonzalo N, de la Torre Hernandez JM, Prati F, Koskinas K, Joner M, Radu MD, Erlinge D, Regar E, Kunadian V, Maehara A, Byrne RA, Capodanno D, Akasaka T, Wijns W, Mintz GS, Guagliumi G (2019) Clinical use of intracoronary imaging. Part 2: acute coronary syndromes, ambiguous coronary angiography findings, and guiding interventional decision-making: an expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur Heart J 40:2566–2584

    Article  Google Scholar 

  26. Waxman S, Dixon SR, L’Allier P, Moses JW, Petersen JL, Cutlip D, Tardif JC, Nesto RW, Muller JE, Hendricks MJ, Sum ST, Gardner CM, Goldstein JA, Stone GW, Krucoff MW (2009) In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc Imaging 2:858–868

    Article  Google Scholar 

  27. Fujii K, Kubo T, Otake H, Nakazawa G, Sonoda S, Hibi K, Shinke T, Kobayashi Y, Ikari Y, Akasaka T (2020) Expert consensus statement for quantitative measurement and morphological assessment of optical coherence tomography. Cardiovasc Interv Ther 35:13–18

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank all of the hospital staff who assisted in data collection.

Funding

The authors received no financial support for the research, authorship, or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Tateishi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tateishi, K., Kitahara, H., Saito, Y. et al. Impact of clinical presentations on lipid core plaque assessed by near-infrared spectroscopy intravascular ultrasound. Int J Cardiovasc Imaging 37, 1151–1158 (2021). https://doi.org/10.1007/s10554-020-02107-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-02107-w

Keywords

Navigation