Skip to main content

Advertisement

Log in

Assessment of biatrial function in clinically well pediatric bicaval heart transplantation patients by three-dimensional echocardiography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Atrial size and function are closely correlated with atrial contributions to cardiovascular performance. Therefore, in this study, we aimed to assess atrial size and function in pediatric heart transplantation (HTx) patients using three-dimensional echocardiography (3DE). We enrolled 33 clinically well pediatric HTx patients and 33 healthy controls with a similar distribution of sex and age to the HTx patients. All patients underwent two-dimensional echocardiography (2DE) and 3DE. 2DE- and 3DE-derived biatrial maximal volume (Vmax), minimal volume (Vmin), ejection volume (EV), ejection fraction (EF), volume before atrial contraciton (VpreA), passive EV, passive EF, active EV and active EF were obtained in all patients. The 3D left atrail (LA) Vmax, Vmin and VpreA increased significantly in HTx patients after being indexed by BSA, while 3D LAEV and passive EV decreased significantly (P < 0.05). Moreover, the 3D LAEF, LA passive EF, and LA active EF all decreased significantly in HTx patients (P < 0.05). The 3D right atrial (RA) Vmax, Vmin, and VpreA increased significantly in HTx patients (P < 0.05), while the 3D RAEF and RA passive EF decreased significantly in HTx patients (P < 0.05). 3DE-derived LAVmax, LAVpreA, LA passive EV, LAEF, and LA passive EF were all lower than the corresponding 2D parameters. 3DE-derived RAVpreA, RA passive EV and RAEF were all lower than the corresponding 2D parameters. Atrial sizes and function assessed by 3DE- and 2DE-derived parameters, yield significantly discordant results in pediatric HTx patients. 3DE confirms significantly enlarged atrial sizes and decreased atrial functions in pediatric HTx patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Stehlik J, Kobashigawa J, Hunt SA, Reichenspurner H, Kirklin JK (2018) Honoring 50 years of clinical heart transplantation in circulation: in-depth state-of-the-art review. Circulation 137(1):71–87. https://doi.org/10.1161/CIRCULATIONAHA.117.029753

    Article  PubMed  Google Scholar 

  2. Kindel SJ, Hsu HH, Hussain T, Johnson JN, McMahon CJ, Kutty S (2017) Multimodality noninvasive imaging in the monitoring of pediatric heart transplantation. J Am Soc Echocardiogr 30(9):859–870. https://doi.org/10.1016/j.echo.2017.06.003

    Article  PubMed  Google Scholar 

  3. Dipchand AI, Rossano JW, Edwards LB et al (2015) The Registry of the International Society for Heart and Lung Transplantation: eighteenth official pediatric heart transplantation report-2015; focus theme: early graft failure. J Heart Lung Transpl 34(10):1233–1243. https://doi.org/10.1016/j.healun.2015.08.002

    Article  Google Scholar 

  4. Rossano JW, Cherikh WS, Chambers DC et al (2018) The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: twenty-first pediatric heart transplantation report-2018; Focus theme: multiorgan transplantation. J Heart Lung Transpl 37(10):1184–1195. https://doi.org/10.1016/j.healun.2018.07.018

    Article  Google Scholar 

  5. Badano LP, Miglioranza MH, Edvardsen T et al (2015) European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of Cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation. Eur Heart J Cardiovasc Imaging 16(9):919–948. https://doi.org/10.1093/ehjci/jev139

    Article  PubMed  Google Scholar 

  6. To AC, Flamm SD, Marwick TH, Klein AL (2011) Clinical utility of multimodality LA imaging: assessment of size, function, and structure. JACC Cardiovasc Imaging 4(7):788–798. https://doi.org/10.1016/j.jcmg.2011.02.018

    Article  PubMed  Google Scholar 

  7. Boyd AC, Thomas L (2014) Left atrial volumes: two-dimensional, three-dimensional, cardiac magnetic resonance and computed tomography measurements. Curr Opin Cardiol 29(5):408–416. https://doi.org/10.1097/HCO.0000000000000087

    Article  PubMed  Google Scholar 

  8. Taniguchi N, Miyasaka Y, Suwa Y et al (2019) Usefulness of left atrial volume as an independent predictor of development of heart failure in patients with atrial fibrillation. Am J Cardiol 124(9):1430–1435. https://doi.org/10.1016/j.amjcard.2019.07.049

    Article  PubMed  Google Scholar 

  9. Sato T, Tsujino I, Ohira H et al (2015) Right atrial volume and reservoir function are novel independent predictors of clinical worsening in patients with pulmonary hypertension. J Heart Lung Transpl 34(3):414–423. https://doi.org/10.1016/j.healun.2015.01.984

    Article  Google Scholar 

  10. Hoit BD (2014) Left atrial size and function: role in prognosis. J Am Coll Cardiol 63(6):493–505. https://doi.org/10.1016/j.jacc.2013.10.055

    Article  PubMed  Google Scholar 

  11. Land S, Niederer SA (2018) Influence of atrial contraction dynamics on cardiac function. Int J Numer Method Biomed Eng. https://doi.org/10.1002/cnm.2931

    Article  PubMed  Google Scholar 

  12. Poutanen T, Jokinen E, Sairanen H, Tikanoja T (2003) Left atrial and left ventricular function in healthy children and young adults assessed by three dimensional echocardiography. Heart 89(5):544–549. https://doi.org/10.1136/heart.89.5.544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anwar AM, Geleijnse ML, Soliman OI, Nemes A, ten Cate FJ (2007) Left atrial Frank–Starling law assessed by real-time, three-dimensional echocardiographic left atrial volume changes. Heart 93(11):1393–1397. https://doi.org/10.1136/hrt.2006.099366

    Article  PubMed  PubMed Central  Google Scholar 

  14. Poutanen T, Ikonen A, Vainio P, Jokinen E, Tikanoja T (2000) Left atrial volume assessed by transthoracic three dimensional echocardiography and magnetic resonance imaging: dynamic changes during the heart cycle in children. Heart 83(5):537–542. https://doi.org/10.1136/heart.83.5.537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jenkins C, Bricknell K, Marwick TH (2005) Use of real-time three-dimensional echocardiography to measure left atrial volume: comparison with other echocardiographic techniques. J Am Soc Echocardiogr 18(9):991–997. https://doi.org/10.1016/j.echo.2005.03.027

    Article  PubMed  Google Scholar 

  16. Linden K, Goldschmidt F, Laser KT et al (2019) (2019) Left atrial volumes and phasic function in healthy children: reference values using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 32(8):1036-1045.e9. https://doi.org/10.1016/j.echo.2019.03.018

    Article  PubMed  Google Scholar 

  17. Bech-Hanssen O, Pergola V, Al-Admawi M, Fadel BM, Di Salvo G (2016) Atrial function in heart transplant recipients operated with the bicaval technique. Scand Cardiovasc J 50(1):42–51. https://doi.org/10.3109/14017431.2015.1091946

    Article  PubMed  Google Scholar 

  18. Yeh J, Aiyagari R, Gajarski RJ, Zamberlan MC, Lu JC (2015) Left atrial deformation predicts pulmonary capillary wedge pressure in pediatric heart transplant recipients. Echocardiography 32(3):535–540. https://doi.org/10.1111/echo.12679

    Article  PubMed  Google Scholar 

  19. Debonnaire P, Joyce E, Hiemstra Y et al (2017) Left atrial size and function in hypertrophic cardiomyopathy patients and risk of new-onset atrial fibrillation. Circ Arrhythm Electrophysiol 10(2):e004052. https://doi.org/10.1161/CIRCEP.116.004052

    Article  PubMed  Google Scholar 

  20. Cao S, Zhou Q, Chen JL, Hu B, Guo RQ (2016) The differences in left atrial function between ischemic and idiopathic dilated cardiomyopathy patients: a two-dimensional speckle tracking imaging study. J Clin Ultrasound 44(7):437–445. https://doi.org/10.1002/jcu.22352

    Article  PubMed  Google Scholar 

  21. Liu S, Ma C, Ren W et al (2015) Regional left atrial function differentiation in patients with constrictive pericarditis and restrictive cardiomyopathy: a study using speckle tracking echocardiography. Int J Cardiovasc Imaging 31(8):1529–1536. https://doi.org/10.1007/s10554-015-0726-7

    Article  PubMed  Google Scholar 

  22. Chowdhury SM, Butts RJ, Hlavacek AM et al (2018) ECHOCARDIOGRAPHIC detection of increased ventricular diastolic stiffness in pediatric heart transplant recipients: a pilot study. J Am Soc Echocardiogr 31(3):342-348.e1. https://doi.org/10.1016/j.echo.2017.11.010

    Article  PubMed  Google Scholar 

  23. Behera SK, Trang J, Feeley BT, Levi DS, Alejos JC, Drant S (2008) The use of Doppler tissue imaging to predict cellular and antibody-mediated rejection in pediatric heart transplant recipients. Pediatr Transpl 12(2):207–214. https://doi.org/10.1111/j.1399-3046

    Article  Google Scholar 

  24. Savage A, Hlavacek A, Ringewald J, Shirali G (2010) Evaluation of the myocardial performance index and tissue doppler imaging by comparison to near-simultaneous catheter measurements in pediatric cardiac transplant patients. J Heart Lung Transpl 29(8):853–858. https://doi.org/10.1016/j.healun.2010.03.014

    Article  Google Scholar 

  25. Ingvarsson A, Werther Evaldsson A, Waktare J et al (2018) Normal reference ranges for transthoracic echocardiography following heart transplantation. J Am Soc Echocardiogr 31(3):349–360. https://doi.org/10.1016/j.echo.2017.11.003

    Article  PubMed  Google Scholar 

  26. Urbano-Moral JA, Arias-Godinez JA, Ahmad R et al (2013) Evaluation of myocardial mechanics with three-dimensional speckle tracking echocardiography in heart transplant recipients: comparison with two-dimensional speckle tracking and relationship with clinical variables. Eur Heart J Cardiovasc Imaging 14(12):1167–1173. https://doi.org/10.1093/ehjci/jet065

    Article  PubMed  Google Scholar 

  27. Chinali M, Esposito C, Grutter G et al (2017) Cardiac dysfunction in children and young adults with heart transplantation: a comprehensive echocardiography study. J Heart Lung Transpl 36(5):559–566. https://doi.org/10.1016/j.healun.2016.11.007

    Article  Google Scholar 

  28. Harrington JK, Richmond ME, Woldu KL, Pasumarti N, Kobsa S, Freud LR (2019) Serial changes in right ventricular systolic function among rejection-free children and young adults after heart transplantation. J Am Soc Echocardiogr 32(8):1027-1035.e2. https://doi.org/10.1016/j.echo.2019.04.413

    Article  PubMed  Google Scholar 

  29. Zhu SS, Sun W, Qiao WH et al (2020) Real time three-dimensional echocardiographic quantification of left atrial volume in orthotopic heart transplant recipients: comparisons with cardiac magnetic resonance imaging. Echocardiography. https://doi.org/10.1111/echo.14792

    Article  PubMed  Google Scholar 

  30. Watanabe K, Schäfer M, Cassidy C, Miyamoto SD, Jone PN (2019) Right atrial function in pediatric heart transplant patients by echocardiographic strain measurements. Pediatr Transpl 23(3):e13383. https://doi.org/10.1111/petr.13383

    Article  Google Scholar 

  31. Lu JC, Magdo HS, Yu S et al (2016) Usefulness of diastolic strain measurements in predicting elevated left ventricular filling pressure and risk of rejection or coronary artery vasculopathy in pediatric heart transplant recipients. Am J Cardiol 117(9):1533–1538. https://doi.org/10.1016/j.amjcard.2016.02.009

    Article  PubMed  Google Scholar 

  32. Meng X, Li Y, Li H, Lv X (2018) Three-dimensional echocardiography to evaluate right atrial volume and phasic function in pulmonary hypertension. Echocardiography 35(2):153–161. https://doi.org/10.1111/echo.13761

    Article  PubMed  Google Scholar 

  33. Zhang K, Braun A, von Koeckritz F et al (2019) Right heart remodeling in patients with end-stage alcoholic liver cirrhosis: speckle tracking point of view. J Clin Med. https://doi.org/10.3390/jcm8091285

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers 81922033, 81727805, 81530056, 81671705].

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the study: ML, QL, LZ, MX. Acquisition of data: ML, HL, CW. Analysis and interpretation of data: ML, SW, HL, CW. Drafting the article: ML, QL, SW. Revising the article: ML, QL, SW, ND, YL, LZ, MX. Final approval of the article: ML, QL, SW, HL, CW, ND, YL, LZ, MX.

Corresponding authors

Correspondence to Li Zhang or Mingxing Xie.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict iof interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Lv, Q., Wang, S. et al. Assessment of biatrial function in clinically well pediatric bicaval heart transplantation patients by three-dimensional echocardiography. Int J Cardiovasc Imaging 37, 921–929 (2021). https://doi.org/10.1007/s10554-020-02067-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-02067-1

Keywords

Navigation