Skip to main content

Advertisement

Log in

Effects of angiotensin receptor neprilysin inhibition on pulmonary arterial stiffness in heart failure with reduced ejection fraction

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The sacubitril/valsartan combination is an important agent used in the treatment of heart failure with reduced ejection fraction (HFrEF). Pulmonary artery stiffness (PAS) is an index developed to evaluate the pulmonary vascular bed. Changes in pulmonary vascular structures in HFrEF patients can affect PAS. In this study, we aimed to investigate the effect of sacubitril/valsartan on PAS in HFrEF patients. One hundred fifty HFrEF patients, who received sacubitril/valsartan therapy and continued for at least 6 months without interruption, were examined retrospectively. N-terminal pro-B-type natriuretic peptide levels (NT-proBNP), NYHA classes, Minnesota Living with Heart Failure Questionnaire (MLWHFQ) scores, New York Heart Association (NYHA) functional classes and echocardiograpic parameters such as left ventricular ejection fraction (LVEF), mean pulmonary artery pressure (mPAP), right ventricle myocardial performance index (RV-MPI), Tricuspid annular plane systolic excursion (TAPSE), right ventricular fractional area change (RV-FAC) and PAS changes were evaluated before and 6 months after sacubitril/valsartan treatment. PAS was calculated by using the maximal frequency shift and acceleration time of the pulmonary artery flow trace measured in the echocardiogram. PAS values were significantly reduced (23.8 ± 2.8 vs 19.1 ± 3.1 kHz/ms, p < 0.001) after the sacubitril/valsartan treatment. Sacubitril/valsartan treatment was associated with significant improvements in NYHA class and MLWHFQ scores; significant reductions in the NT-proBNP levels, mPAP, and RV-MPI, and significant increases in LVEF, TAPSE, and RV-FAC (p < 0.05). The significant reduction in the PAS value was significantly correlated with the improvements in the MLWFQ scores, NT-proBNP levels, mPAP, RV-MPI, TAPSE and RV-FAC. In HFrEF patients, switching from angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker therapy to sacubitril/valsartan may result in reduction in PAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ponikowski P, Voors AA, Anker SD et al (2016) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37:2129–2200

    Article  Google Scholar 

  2. McMurray JJV, Packer M, Desai AS et al (2014) Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004

    Article  Google Scholar 

  3. Januzzi JL Jr, Prescott MF, Butler J et al (2019) Association of change in N-terminal pro-B-type natriuretic peptide following initiation of sacubitril–valsartan treatment with cardiac structure and function in patients with heart failure with reduced ejection fraction. JAMA 322:1–11

    Article  Google Scholar 

  4. Khan Z, Gholkar G, Tolia S, Kado H, Zughaib M (2018) Effect of sacubitril/valsartan on cardiac filling pressures in patients with left ventricular systolic dysfunction. Int J Cardiol 271:169–173

    Article  Google Scholar 

  5. Görgülü S, Eren M, Yildirim A et al (2003) A new echocardiographic approach in assessing pulmonary vascular bed in patients with congenital heart disease: pulmonary artery stiffness. Anadolu Kardiyol Derg 3:92–97

    PubMed  Google Scholar 

  6. Yildirim E, Celik M, Yuksel UC et al (2017) Relationship between pulmonary artery stiffness and functional capacity in patients with heart failure with reduced ejection fraction. Korean Circ J 47:929–938

    Article  CAS  Google Scholar 

  7. Duman D, Masatlioğlu S, Demirtunç R, Karadağ B (2008) Increased pulmonary artery stiffness and its relation to right ventricular function in patients with systemic lupus erythematosus. Turk Kardiyol Dern Ars 36:82–89

    PubMed  Google Scholar 

  8. Rosenkranz S, Gibbs JS, Wachter R et al (2016) Left ventricular heart failure and pulmonary hypertension. Eur Heart J 37:942–954

    Article  Google Scholar 

  9. Hulsmann M, Berger R, Sturm B et al (2002) Prediction of outcome by neurohumoral activation, the six-minute walk test and the Minnesota Living with Heart Failure Questionnaire in an outpatient cohort with congestive heart failure. Eur Heart J 11:886–891

    Article  Google Scholar 

  10. Chemla D, Castelain V, Humbert M et al (2004) New formula for predictingmean pulmonary artery pressure using systolic pulmonary artery pressure. Chest 126:1313–1317

    Article  Google Scholar 

  11. Mitchell C, Rahko PS, Blauwet LA et al (2019) Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr 32:1–64

    Article  Google Scholar 

  12. Tozzi CA, Christiansen DL, Poiani GJ et al (1994) Excess collagen in hypertensive pulmonary arteries decreases vascular distensibility. Am J Respir Crit Care Med 149:1317–1326

    Article  CAS  Google Scholar 

  13. Wang Z, Lakes RS, Golob M et al (2013) Changes in large pulmonary arterial viscoelasticity in chronic pulmonary hypertension. PLoS One 8:e78569

    Article  CAS  Google Scholar 

  14. Wang Z, Lakes RS, Eickhoff JC et al (2013) Effects of collagen deposition on passive and active mechanical properties of large pulmonary arteries in hypoxic pulmonary hypertension. Biomech Model Mechanobiol 12:1115–1125

    Article  Google Scholar 

  15. Stevens GR, Garcia-Alvarez A, Sahni S et al (2012) RV dysfunction in pulmonary hypertension is independently related to pulmonary artery stiffness. JACC Cardiovasc Imaging 5:378–387

    Article  Google Scholar 

  16. Zoghbi WA, Habib GB, Quinones MA (1990) Doppler assessment of right ventricular filling in a normal population. Comparison with left ventricular filling dynamics. Circulation 82:1316–1324

    Article  CAS  Google Scholar 

  17. Kang KW, Chang HJ, Kim YJ et al (2011) Cardiac magnetic resonance imaging-derived pulmonary artery distensibility index correlates with pulmonary artery stiffness and predicts functional capacity in patients with pulmonary arterial hypertension. Circ J 75:2244–2251

    Article  Google Scholar 

  18. Nemes A, Forster T (2013) Evaluation of pulmonary artery stiffness using routine clinical imaging methods. Orv Hetil 154:1931–1933

    Article  Google Scholar 

  19. Ozkececi G, Ulasli SS, Akci O et al (2016) Assessment of pulmonary arterial stiffness in obstructive sleep apnea. Int J Cardiovasc Imaging 32:799–805

    Article  Google Scholar 

  20. Mahfouz RA (2012) Impact of pulmonary artery stiffness on right ventricular function and tricuspid regurgitation after successful percutaneous balloon mitral valvuloplasty: the importance of early intervention. Echocardiography 29:1157–1163

    Article  Google Scholar 

  21. Cerik IB, Meric M, Gulel O et al (2019) Echocardiographic assessment of pulmonary arterial stiffness in human immunodeficiency virus-infected patients. Echocardiography 36:1123–1131

    Article  Google Scholar 

  22. Gu J, Noe A, Chandra P et al (2010) Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi). J Clin Pharmacol 50:401–414

    Article  CAS  Google Scholar 

  23. Desai AS, McMurray JJ, Packer M et al (2015) Effect of the angiotensin-receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients. Eur Heart J 36:1990–1997

    Article  CAS  Google Scholar 

  24. Kang DH, Park SJ, Shin SH et al (2019) Angiotensin receptor neprilysin inhibitor for functional mitral regurgitation. Circulation 139:1354–1365

    Article  CAS  Google Scholar 

  25. Almufleh A, Marbach J, Chih S et al (2017) Ejection fraction improvement and reverse remodeling achieved with sacubitril/valsartan in heart failure with reduced ejection fraction patients. Am J Cardiovasc Dis 108–7(113):1354–1365

    Google Scholar 

  26. Bayard G, Da Costa A, Pierrard R et al (2019) Impact of sacubitril/valsartan on echo parameters in heart failure patients with reduced ejection fraction a prospective evaluation. Int J Cardiol Heart Vasc 25:100418

    PubMed  PubMed Central  Google Scholar 

  27. Delgado JF, Conde E, Sánchez V et al (2005) Pulmonary vascular remodeling in pulmonary hypertension due to chronic heart failure. Eur J Heart Fail 7:1011–1016

    Article  Google Scholar 

  28. Hsu JH, Liou SF, Yang SN et al (2014) B-type natriuretic peptide inhibits angiotensin II-induced proliferation and migration of pulmonary arterial smooth muscle cells. Pediatr Pulmonol 49:734–744

    Article  Google Scholar 

  29. Clements RT, Vang A, Fernandez-Nicolas A et al (2019) Treatment of pulmonary hypertension with angiotensin II receptor blocker and neprilysin inhibitor sacubitril/valsartan. Circ Heart Fail 12:e005819

    Article  CAS  Google Scholar 

  30. Weir-McCall JR, Struthers AD, Lipworth BJ, Houston JG et al (2015) The role of pulmonary arterial stiffness in COPD. Respir Med 109:1381–1390

    Article  Google Scholar 

  31. Altıparmak HI, Erkus ME, Polat M et al (2016) Evaluation of pulmonary artery stiffness in patients with obstructive sleep apnea syndrome. Echocardiography 33:362–371

    Article  Google Scholar 

  32. De Simone V, Guarise P, Zanotto G, Morando G (2019) Reduction in pulmonary artery pressures with use of sacubitril/valsartan. J Cardiol Cases 20:187–190

    Article  Google Scholar 

  33. Masetti M, Corazza F, Giovannini L et al (2020) Hemodynamic effects of sacubitril-valsartan in heart failure with reduced-ejection fraction: are all doses created equal? J Heart Lung Transplant 39:S53

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Arslan.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yenerçağ, M., Arslan, U., Dereli, S. et al. Effects of angiotensin receptor neprilysin inhibition on pulmonary arterial stiffness in heart failure with reduced ejection fraction. Int J Cardiovasc Imaging 37, 165–173 (2021). https://doi.org/10.1007/s10554-020-01973-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-01973-8

Keywords

Navigation