Skip to main content
Log in

Distribution of myocardial work in arterial hypertension: insights from non-invasive left ventricular pressure-strain relations

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

A index of non-invasive myocardial work (MWI) can account for pressure during the assessment of cardiac function, potentially separating the influence of loading conditions from the influence of the underlying tissue remodelling. The aim is to assess LV function accounted for loading and explore hypertensive MWI distribution by comparing healthy individuals to hypertensive patients without and with localized basal septal hypertrophy (BSH). An echocardiogram was performed in 170 hypertensive patients and 20 healthy individuals. BSH was defined by a basal-to-mid septal wall thickness ratio ≥ 1.4. LV speckle-tracking was performed, and the MWI calculated globally and regionally for the apical, mid and basal regions. An apex-to-base gradient, seen in regional strain values, was preserved in the distribution of myocardial work, with the apical region compensating for the impairment of the basal segments. This functional redistribution was further pronounced in patients with localized BSH. In these patients, segmental MWI analysis revealed underlying impairment of regional work unrelated to acute loading conditions. Non-invasive MWI analysis offers the possibility to compare LV function regardless of blood pressure at the time of observation. Changes in MWI distribution can be seen in hypertension unrelated to the load-dependency of strain. Accentuated functional changes affirm the role of BSH as an echocardiographic marker in hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boe E, Russell K, Eek C, Eriksen M, Remme EW, Smiseth OA, Skulstad H (2015) Non-invasive myocardial work index identifies acute coronary occlusion in patients with non-ST-segment elevation-acute coronary syndrome. Eur Heart J: Cardiovasc Imaging 16:1247–1255. https://doi.org/10.1093/ehjci/jev078

    Article  Google Scholar 

  2. Murai D, Yamada S, Hayashi T, Okada K, Nishino H, Nakabachi M, Yokoyama S, Abe A, Ichikawa A, Ono K, Kaga S, Iwano H, Mikami T, Tsutsui H (2017) Relationships of left ventricular strain and strain rate to wall stress and their afterload dependency. Heart Vessels 32:574–583. https://doi.org/10.1007/s00380-016-0900-4

    Article  PubMed  Google Scholar 

  3. Baltabaeva A, Marciniak M, Bijnens B, Moggridge J, He F, Antonios T, Macgregor G, Sutherland G (2007) Regional left ventricular deformation and geometry analysis provides insights in myocardial remodelling in mild to moderate hypertension. Eur J Echocardiogr. https://doi.org/10.1016/j.euje.2007.08.004

    Article  PubMed  Google Scholar 

  4. Gaudron PD, Liu D, Scholz F, Hu K, Florescu C, Herrmann S, Bijnens B, Ertl G, Störk S, Weidemann F (2016) The septal bulge—an early echocardiographic sign in hypertensive heart disease. J Am Soc Hypertens 10:70–80. https://doi.org/10.1016/j.jash.2015.11.006

    Article  PubMed  Google Scholar 

  5. Verdecchia P, Porcellati C, Zampi I, Schillaci G, Gatteschi C, Battistelli M, Bartoccini C, Borgioni C, Ciucci A (1994) Asymmetric left ventricular remodeling due to isolated septal thickening in patients with systemic hypertension and normal left ventricular masses. Am J Cardiol 73:247–252. https://doi.org/10.1016/0002-9149(94)90228-3

    Article  CAS  PubMed  Google Scholar 

  6. Diaz T, Pencina MJ, Benjamin EJ, Aragam J, Fuller DL, Pencina KM, Levy D, Vasan RS (2009) Prevalence, clinical correlates, and prognosis of discrete upper septal thickening on echocardiography: the Framingham Heart Study. Echocardiography 26:247–253. https://doi.org/10.1111/j.1540-8175.2008.00806.x

    Article  PubMed  Google Scholar 

  7. Frohlich ED, Apstein C, Chobanian AV, Devereux RB, Dustan HP, Dzau V, Fauad-Tarazi F, Horan MJ, Pfeffer MA, Re RN, Rocccella EJ, Savage D, Shub C (1992) The heart in hypertension. N Engl J Med 327:998–1008

    Article  CAS  Google Scholar 

  8. Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Remme EW, Haugaa KH, Opdahl A, Fjeld JG, Gjesdal O, Edvardsen T, Smiseth OA (2012) A novel clinical method for quantification of regional left ventricular pressure–strain loop area: a non-invasive index of myocardial work. Eur Heart J 33:724–733. https://doi.org/10.1093/eurheartj/ehs016

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt J-U (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J: Cardiovasc Imaging 16:233–271. https://doi.org/10.1093/ehjci/jev014

    Article  Google Scholar 

  10. Loncaric F, Nunno L, Mimbrero M, Marciniak M, Fernandes JF, Tirapu L, Fabijanovic D, Sanchis L, Doltra A, Cikes M, Lamata P, Bijnens B, Sitges M (2020) Basal ventricular septal hypertrophy in systemic hypertension. Am J Cardiol 125:1339–1346. https://doi.org/10.1016/j.amjcard.2020.01.045

    Article  PubMed  Google Scholar 

  11. Maciej Marciniak, Smooth AHA Plot (2019). https://github.com/MaciejPMarciniak/SmoothAHAplot

  12. Maciej Marciniak, Echopac Exports Reader (2019). https://github.com/MaciejPMarciniak/EchopacExportsReade

  13. Phelan D, Collier P, Thavendiranathan P, Popović ZB, Hanna M, Plana JC, Marwick TH, Thomas JD (2012) Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 98:1442–1448. https://doi.org/10.1136/heartjnl-2012-302353

    Article  PubMed  Google Scholar 

  14. Manganaro R, Marchetta S, Dulgheru R, Ilardi F, Sugimoto T, Robinet S, Cimino S, Go YY, Bernard A, Kacharava G, Athanassopoulos GD, Barone D, Baroni M, Cardim N, Hagendorff A, Hristova K, López-Fernández T, de la Morena G, Popescu BA, Penicka M, Ozyigit T, Rodrigo Carbonero JD, van de Veire N, Von Bardeleben RS, Vinereanu D, Zamorano JL, Rosca M, Calin A, Moonen M, Magne J, Cosyns B, Galli E, Donal E, Carerj S, Zito C, Santoro C, Galderisi M, Badano LP, Lang RM, Oury C, Lancellotti P (2018) Echocardiographic reference ranges for normal non-invasive myocardial work indices: results from the EACVI NORRE study. Eur Heart J: Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jey188

    Article  Google Scholar 

  15. Büchi M, Hess OH, Murakami T, Krayenbuehl HP (1990) Left ventricular wall stress distribution in chronic pressure and volume overload: effect of normal and depressed contractility on regional stress-velocity relations. Basic Res Cardiol 85:367–383. https://doi.org/10.1007/BF01907129

    Article  PubMed  Google Scholar 

  16. Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Investig 56:56–64. https://doi.org/10.1172/JCI108079

    Article  CAS  PubMed  Google Scholar 

  17. Bogaert J, Rademakers FE (2001) Regional nonuniformity of normal adult human left ventricle. Am J Physiol Heart Circ Physiol 280:H610–H620. https://doi.org/10.1152/ajpheart.2001.280.2.H610

    Article  CAS  PubMed  Google Scholar 

  18. Heng MK, Janz RF, Jobin J (1985) Estimation of regional stress in the left ventricular septum and free wall: an echocardiographic study suggesting a mechanism for asymmetric septal hypertrophy. Am Heart J 110:84–90. https://doi.org/10.1016/0002-8703(85)90519-8

    Article  CAS  PubMed  Google Scholar 

  19. Goh VJ, Le T-T, Bryant J, Wong JI, Su B, Lee C-H, Pua CJ, Sim CPY, Ang B, Aw TC, Cook SA, Chin CWL (2017) Novel index of maladaptive myocardial remodeling in hypertension. Circ: Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.117.006840

    Article  Google Scholar 

  20. Chan J, Edwards NFA, Khandheria BK, Shiino K, Sabapathy S, Anderson B, Chamberlain R, Scalia GM (2019) A new approach to assess myocardial work by non-invasive left ventricular pressure–strain relations in hypertension and dilated cardiomyopathy. Eur Heart J: Cardiovasc Imaging 20:31–39. https://doi.org/10.1093/ehjci/jey131

    Article  Google Scholar 

  21. Duchenne J, Turco A, Ünlü S, Pagourelias ED, Vunckx K, Degtiarova G, Bézy S, Cvijic M, Nuyts J, Claus P, Rega F, Gheysens O, Voigt J-U (2019) Left ventricular remodeling results in homogenization of myocardial work distribution. Circ: Arrhythm Electrophysiol. https://doi.org/10.1161/CIRCEP.118.007224

    Article  Google Scholar 

  22. Pearson AC (2017) The evolution of basal septal hypertrophy: From benign and age-related normal variant to potentially obstructive and symptomatic cardiomyopathy. Echocardiography 34:1062–1072. https://doi.org/10.1111/echo.13588

    Article  PubMed  Google Scholar 

  23. Lewis JF, Maron BJ (1990) Diversity of patterns of hypertrophy in patients with systemic hypertension and marked left ventricular wall thickening. Am J Cardiol 65:874–881. https://doi.org/10.1016/0002-9149(90)91429-A

    Article  CAS  PubMed  Google Scholar 

  24. Cikes M, Sutherland GR, Anderson LJ, Bijnens BH (2010) The role of echocardiographic deformation imaging in hypertrophic myopathies. Nat Rev Cardiol 7:384–396. https://doi.org/10.1038/nrcardio.2010.56

    Article  CAS  PubMed  Google Scholar 

  25. Galli E, Vitel E, Schnell F, Le Rolle V, Hubert A, Lederlin M, Donal E (2019) Myocardial constructive work is impaired in hypertrophic cardiomyopathy and predicts left ventricular fibrosis. Echocardiography 36:74–82. https://doi.org/10.1111/echo.14210

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by Horizon 2020 European Commission Project H2020-MSCA-ITN-2016 (764738), Grant from Fundacio La Marató de TV3 (040310, Exp 2015.40.30), and from Fondo de Investigaciones Sanitarias - Instituto de Salud Carlos III (PI17/01131). PL holds a Wellcome Trust Senior Research Fellowship (209450/Z/17/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Loncaric.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Comite Etico de Investigacion Clinica, Hospital Clinic, Barcelona, Reference Number: HCB/2015/0455.

Informed consent

Informed consent was obtained from all individual participants included in the subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loncaric, F., Marciniak, M., Nunno, L. et al. Distribution of myocardial work in arterial hypertension: insights from non-invasive left ventricular pressure-strain relations. Int J Cardiovasc Imaging 37, 145–154 (2021). https://doi.org/10.1007/s10554-020-01969-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-01969-4

Keywords

Navigation