Skip to main content

Advertisement

Log in

Diffusion-weighted imaging in hypertrophic cardiomyopathy: association with high T2-weighted signal intensity in addition to late gadolinium enhancement

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Diffusion-weighted imaging (DWI) has been confirmed to be associated with late gadolinium enhancement (LGE) in hypertrophic cardiomyopathy (HCM). In this context, we aimed to study whether DWI could reflect the active tissue injury and edema information of HCM which were usually indicated by T2 weighted images. Forty HCM patients were examined using a 3.0 T magnetic resonance scanner. Cine, T2-weighted short tau inversion recovery (T2-STIR), DWI and LGE sequences were acquired. T1 mapping was also included to quantify the focal and diffuse fibrosis. Cardiac troponin I (cTnI) was tested to assess the recently myocardial injury. Student’s t-test, Mann–Whitney U test, One-way analysis, Kruskal–Wallis analysis, the Spearman correlation analysis, and multivariable regression were used in this study. The apparent diffusion coefficient (ADC) was significantly elevated in the cTnI positive group (P = 0.01) and correlated with LGE (ρ = 0.312, P = 0.049) and HighT2 extent (ρ = 0.443, P = 0.004) in the global level. In the segmental analysis, the ADC significantly differentiated the segments with and without HighT2/LGE presence (P = 0.00). The average ADC values were higher in segments with HighT2 and LGE coexistence than in those with only LGE presence (P < 0.05). Multivariable regression indicated that segmental HighT2 and LGE were both contributing factors to the ADC values. In this study of HCM, we confirmed that ADC as a molecular diffusion parameter reflects the replacement fibrosis of myocardium. Moreover, it also reveals edema extent and its association with serum cTnI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oh D, Ridgway JP, Kuehne T, Berger F, Plein S, Sivananthan M, Messroghli DR (2012) Cardiovascular magnetic resonance of myocardial edema using a short inversion time inversion recovery (STIR) black-blood technique: diagnostic accuracy of visual and semi-quantitative assessment. J Cardiovasc Magn Reson 14:22

    Google Scholar 

  2. Butler TL, Egan JR, Graf FG, Au CG, McMahon AC, North KN, Winlaw DS (2009) Dysfunction induced by ischemia versus edema: does edema matter? J Thorac Cardiovasc Surg 138(1):141–147

    PubMed  Google Scholar 

  3. Bragadeesh T, Jayaweera AR, Pascotto M, Micari A, Le DE, Kramer CM, Epstein FH, Kaul S (2008) Post-ischaemic myocardial dysfunction (stunning) results from myofibrillar oedema. Heart 94(2):166–171

    PubMed  CAS  Google Scholar 

  4. Garcia-Dorado D, Theroux P, Munoz R, Alonso J, Elizaga J, Fernandez-Aviles F, Botas J, Solares J, Soriano J, Duran JM (1992) Favorable effects of hyperosmotic reperfusion on myocardial edema and infarct size. Am J Physiol 262(1 Pt 2):H17–H22

    PubMed  CAS  Google Scholar 

  5. Davis KL, Laine GA, Geissler HJ, Mehlhorn U, Brennan M, Allen SJ (2000) Effects of myocardial edema on the development of myocardial interstitial fibrosis. Microcirculation 7(4):269–280

    PubMed  CAS  Google Scholar 

  6. Higgins CB, Herfkens R, Lipton MJ, Sievers R, Sheldon P, Kaufman L, Crooks LE (1983) Nuclear magnetic resonance imaging of acute myocardial infarction in dogs: alterations in magnetic relaxation times. Am J Cardiol 52(1):184–188

    PubMed  CAS  Google Scholar 

  7. Abdel-Aty H, Cocker M, Strohm O, Filipchuk N, Friedrich MG (2008) Abnormalities in T2-weighted cardiovascular magnetic resonance images of hypertrophic cardiomyopathy: regional distribution and relation to late gadolinium enhancement and severity of hypertrophy. J Magn Reson Imaging 28(1):242–245

    PubMed  Google Scholar 

  8. Melacini P, Corbetti F, Calore C, Pescatore V, Smaniotto G, Pavei A, Bobbo F, Cacciavillani L, Iliceto S (2008) Cardiovascular magnetic resonance signs of ischemia in hypertrophic cardiomyopathy. Int J Cardiol 128(3):364–373

    PubMed  Google Scholar 

  9. Gommans DF, Cramer GE, Bakker J, Michels M, Dieker HJ, Timmermans J, Fouraux MA, Marcelis CL, Verheugt FW, Brouwer MA et al (2017) High T2-weighted signal intensity is associated with elevated troponin T in hypertrophic cardiomyopathy. Heart 103(4):293–299

    PubMed  CAS  Google Scholar 

  10. Todiere G, Pisciella L, Barison A, Del Franco A, Zachara E, Piaggi P, Re F, Pingitore A, Emdin M, Lombardi M et al (2014) Abnormal T2-STIR magnetic resonance in hypertrophic cardiomyopathy: a marker of advanced disease and electrical myocardial instability. PLoS ONE 9(10):e111366

    PubMed  PubMed Central  Google Scholar 

  11. Hen Y, Iguchi N, Machida H, Takada K, Utanohara Y, Sumiyoshi T (2013) High signal intensity on T2-weighted cardiac magnetic resonance imaging correlates with the ventricular tachyarrhythmia in hypertrophic cardiomyopathy. Heart Vessels 28(6):742–749

    PubMed  Google Scholar 

  12. Hen Y, Takara A, Iguchi N, Utanohara Y, Teraoka K, Takada K, Machida H, Takamisawa I, Takayama M, Yoshikawa T (2018) High signal intensity on T2-weighted cardiovascular magnetic resonance imaging predicts life-threatening arrhythmic events in hypertrophic cardiomyopathy patients. Circ J 82(4):1062–1069

    PubMed  Google Scholar 

  13. Gommans DHF, Cramer GE, Bakker J, Dieker HJ, Michels M, Fouraux MA, Marcelis CLM, Verheugt FWA, Timmermans J, Brouwer MA et al (2018) High T2-weighted signal intensity for risk prediction of sudden cardiac death in hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 34(1):113–120

    PubMed  Google Scholar 

  14. Schelbert EB, Moon JC (2015) exploiting differences in myocardial compartments with native T1 and extracellular volume fraction for the diagnosis of hypertrophic cardiomyopathy. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.115.004232

    Article  PubMed  Google Scholar 

  15. Friedrich MG (2017) Why edema is a matter of the heart. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.117.006062

    Article  PubMed  Google Scholar 

  16. Puntmann VO, Peker E, Chandrashekhar Y, Nagel E (2016) T1 mapping in characterizing myocardial disease: a comprehensive review. Circ Res 119(2):277–299

    PubMed  CAS  Google Scholar 

  17. Amano Y, Yanagisawa F, Tachi M, Hashimoto H, Imai S, Kumita S (2017) Myocardial T2 mapping in patients with hypertrophic cardiomyopathy. J Comput Assist Tomogr 41(3):344–348

    PubMed  Google Scholar 

  18. Edelman RR, Gaa J, Wedeen VJ, Loh E, Hare JM, Prasad P, Li W (1994) In vivo measurement of water diffusion in the human heart. Magn Reson Med 32(3):423–428

    PubMed  CAS  Google Scholar 

  19. Nguyen C, Fan Z, Sharif B, He Y, Dharmakumar R, Berman DS, Li D (2014) In vivo three-dimensional high resolution cardiac diffusion-weighted MRI: a motion compensated diffusion-prepared balanced steady-state free precession approach. Magn Reson Med 72(5):1257–1267

    PubMed  Google Scholar 

  20. Bueno-Orovio A, Teh I, Schneider JE, Burrage K, Grau V (2016) Anomalous diffusion in cardiac tissue as an index of myocardial microstructure. IEEE Trans Med Imaging 35(9):2200–2207

    PubMed  Google Scholar 

  21. Edalati M, Lee GR, Hui W, Taylor MD, Li YY (2016) Single-shot turbo spin echo acquisition for in vivo cardiac diffusion MRI. Conf Proc IEEE Eng Med Biol Soc 2016:5529–5532

    Google Scholar 

  22. McClymont D, Teh I, Carruth E, Omens J, McCulloch A, Whittington HJ, Kohl P, Grau V, Schneider JE (2017) Evaluation of non-Gaussian diffusion in cardiac MRI. Magn Reson Med 78(3):1174–1186

    PubMed  CAS  Google Scholar 

  23. An DA, Chen BH, Rui W, Shi RY, Bu J, Ge H, Hu J, Xu JR, Wu LM (2018) Diagnostic performance of intravoxel incoherent motion diffusion-weighted imaging in the assessment of the dynamic status of myocardial perfusion. J Magn Reson Imaging 48:1602–1609

    PubMed  Google Scholar 

  24. Nguyen C, Fan Z, Xie Y, Dawkins J, Tseliou E, Bi X, Sharif B, Dharmakumar R, Marban E, Li D (2014) In vivo contrast free chronic myocardial infarction characterization using diffusion-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 16:68

    Google Scholar 

  25. Laissy JP, Gaxotte V, Ironde-Laissy E, Klein I, Ribet A, Bendriss A, Chillon S, Schouman-Claeys E, Steg PG, Serfaty JM (2013) Cardiac diffusion-weighted MR imaging in recent, subacute, and chronic myocardial infarction: a pilot study. J Magn Reson Imaging 38(6):1377–1387

    PubMed  Google Scholar 

  26. Nguyen C, Lu M, Fan Z, Bi X, Kellman P, Zhao S, Li D (2015) Contrast-free detection of myocardial fibrosis in hypertrophic cardiomyopathy patients with diffusion-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 17:107

    Google Scholar 

  27. Wu R, An DA, Hu J, Jiang M, Guo Q, Xu JR, Wu LM (2018) The apparent diffusion coefficient is strongly correlated with extracellular volume, a measure of myocardial fibrosis, and subclinical cardiomyopathy in patients with systemic lupus erythematosus. Acta Radiol 59(3):287–295

    PubMed  Google Scholar 

  28. Witschey WR, Zsido GA, Koomalsingh K, Kondo N, Minakawa M, Shuto T, McGarvey JR, Levack MM, Contijoch F, Pilla JJ et al (2012) In vivo chronic myocardial infarction characterization by spin locked cardiovascular magnetic resonance. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 14:37

    Google Scholar 

  29. Nakajo Y, Zhao Q, Enmi JI, Iida H, Takahashi JC, Kataoka H, Yamato K, Yanamoto H (2018) Early detection of cerebral infarction after focal ischemia using a new MRI indicator. Mol Neurobiol 56:658–670

    PubMed  Google Scholar 

  30. Battey TW, Karki M, Singhal AB, Wu O, Sadaghiani S, Campbell BC, Davis SM, Donnan GA, Sheth KN, Kimberly WT (2014) Brain edema predicts outcome after nonlacunar ischemic stroke. Stroke 45(12):3643–3648

    PubMed  PubMed Central  Google Scholar 

  31. Potet J, Rahmouni A, Mayer J, Vignaud A, Lim P, Luciani A, Dubois-Rande JL, Kobeiter H, Deux JF (2013) Detection of myocardial edema with low-b-value diffusion-weighted echo-planar imaging sequence in patients with acute myocarditis. Radiology 269(2):362–369

    PubMed  Google Scholar 

  32. Okayama S, Uemura S, Saito Y (2009) Detection of infarct-related myocardial edema using cardiac diffusion-weighted magnetic resonance imaging. Int J Cardiol 133(1):e20–21

    PubMed  Google Scholar 

  33. Kociemba A, Pyda M, Katulska K, Lanocha M, Siniawski A, Janus M, Grajek S (2013) Comparison of diffusion-weighted with T2-weighted imaging for detection of edema in acute myocardial infarction. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 15:90

    Google Scholar 

  34. Kubo T, Kitaoka H, Okawa M, Yamanaka S, Hirota T, Hoshikawa E, Hayato K, Yamasaki N, Matsumura Y, Yasuda N et al (2010) Serum cardiac troponin I is related to increased left ventricular wall thickness, left ventricular dysfunction, and male gender in hypertrophic cardiomyopathy. Clin Cardiol 33(2):E1–E7

    PubMed  Google Scholar 

  35. Agarwal A, Yousefzai R, Shetabi K, Samad F, Aggarwal S, Cho C, Bush M, Jan MF, Khandheria BK, Paterick TE et al (2017) Relationship of cardiac troponin to systolic global longitudinal strain in hypertrophic cardiomyopathy. Echocardiography 34(10):1470–1477

    PubMed  Google Scholar 

  36. Okamoto R, Hirashiki A, Cheng XW, Yamada T, Shimazu S, Shinoda N, Okumura T, Takeshita K, Bando Y, Kondo T et al (2013) Usefulness of serum cardiac troponins T and I to predict cardiac molecular changes and cardiac damage in patients with hypertrophic cardiomyopathy. Int Heart J 54(4):202–206

    PubMed  CAS  Google Scholar 

  37. Hamlin SA, Henry TS, Little BP, Lerakis S, Stillman AE (2014) Mapping the future of cardiac MR imaging: case-based review of T1 and T2 mapping techniques. Radiographics 34(6):1594–1611

    PubMed  Google Scholar 

  38. Le Bihan D, van Zijl P (2002) From the diffusion coefficient to the diffusion tensor. NMR Biomed 15(7–8):431–434

    PubMed  Google Scholar 

  39. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, White JA, Abdel-Aty H, Gutberlet M, Prasad S et al (2009) Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. J Am Coll Cardiol 53(17):1475–1487

    PubMed  PubMed Central  Google Scholar 

  40. Cramer G, Bakker J, Gommans F, Brouwer M, Kurvers M, Fouraux M, Verheugt F, Kofflard M (2014) Relation of highly sensitive cardiac troponin T in hypertrophic cardiomyopathy to left ventricular mass and cardiovascular risk. Am J Cardiol 113(7):1240–1245

    PubMed  CAS  Google Scholar 

  41. Maron BJ, Wolfson JK, Epstein SE, Roberts WC (1986) Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol 8(3):545–557

    PubMed  CAS  Google Scholar 

  42. Pop M, Ghugre NR, Ramanan V, Morikawa L, Stanisz G, Dick AJ, Wright GA (2013) Quantification of fibrosis in infarcted swine hearts by ex vivo late gadolinium-enhancement and diffusion-weighted MRI methods. Phys Med Biol 58(15):5009–5028

    PubMed  Google Scholar 

  43. Abdel-Aty H, Zagrosek A, Schulz-Menger J, Taylor AJ, Messroghli D, Kumar A, Gross M, Dietz R, Friedrich MG (2004) Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation 109(20):2411–2416

    PubMed  Google Scholar 

  44. Hinojar R, Foote L, Arroyo Ucar E, Jackson T, Jabbour A, Yu CY, McCrohon J, Higgins DM, Carr-White G, Mayr M et al (2015) Native T1 in discrimination of acute and convalescent stages in patients with clinical diagnosis of myocarditis: a proposed diagnostic algorithm using CMR. JACC Cardiovasc Imaging 8(1):37–46

    PubMed  Google Scholar 

Download references

Acknowledgements

Ruo-yang Shi and Dong-aolei An contributed equally to this work.

Funding

National Natural Science Foundation of China (Grant Nos.81873886 and 81873887), Shanghai Municipal Commission of Health and Family Planning excellent young talent program (Grant No. 2017YQ031), Shanghai Jiao Tong University medical cross project (Grant No. YG2017QN44), Shanghai Shenkang Hospital Development Center Clinical Research and Cultivation Project (Grant No. SHDC12018X21), Shanghai Science and technology innovation action plan, technology standard project Grant numbers: (Grant No. 19DZ2203800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-rong Xu or Lian-ming Wu.

Ethics declarations

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Ry., An, Da., Chen, Bh. et al. Diffusion-weighted imaging in hypertrophic cardiomyopathy: association with high T2-weighted signal intensity in addition to late gadolinium enhancement. Int J Cardiovasc Imaging 36, 2229–2238 (2020). https://doi.org/10.1007/s10554-020-01933-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-01933-2

Keywords

Navigation