Moving beyond two-dimensional screens to interactive three-dimensional visualization in congenital heart disease

Abstract

Beginning with the discovery of X-rays to the development of three-dimensional (3D) imaging, improvements in acquisition, post-processing, and visualization have provided clinicians with detailed information for increasingly accurate medical diagnosis and clinical management. This paper highlights advances in imaging technologies for congenital heart disease (CHD), medical adoption, and future developments required to improve pre-procedural and intra-procedural guidance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Bradley WG (2008) History of medical imaging. Proc Am Philos Soc 152:349–361

    PubMed  Google Scholar 

  2. 2.

    Sundaram M, McGuire MH, Herbold DR (1988) Magnetic resonance imaging of soft tissue masses: an evaluation of fifty-three histologically proven tumors. Magn Reson Imaging 6:237–248

    CAS  Article  Google Scholar 

  3. 3.

    Goitein O, Salem Y, Jacobson J, Goitein D, Mishali D, Hamdan A, Kuperstein R, Di Segni E, Konen E (2014) The role of cardiac computed tomography in infants with congenital heart disease. Isr Med Assoc J 16:147–152

    PubMed  Google Scholar 

  4. 4.

    Luijnenburg SE, Robbers-Visser D, Moelker A, Vliegen HW, Mulder BJ, Helbing WA (2010) Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging. Int J Cardiovasc Imaging 26:57–64. https://doi.org/10.1007/s10554-009-9501-y

    Article  PubMed  Google Scholar 

  5. 5.

    Black D, Vettukattil J (2013) Advanced echocardiographic imaging of the congenitally malformed heart. Curr Cardiol Rev 9:241–252

    CAS  Article  Google Scholar 

  6. 6.

    Samuel BP, Pinto C, Pietila T, Vettukattil JJ (2015) Ultrasound-derived three-dimensional printing in congenital heart disease. J Digit Imaging 28:459–461. https://doi.org/10.1007/s10278-014-9761-5

    Article  PubMed  Google Scholar 

  7. 7.

    Gosnell J, Pietila T, Samuel BP, Kurup HK, Haw MP, Vettukattil JJ (2016) Integration of computed tomography and three-dimensional echocardiography for hybrid three-dimensional printing in congenital heart disease. J Digit Imaging 29:665–669. https://doi.org/10.1007/s10278-016-9879-8

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kurup HK, Samuel BP, Vettukattil JJ (2015) Hybrid 3D printing: a game-changer in personalized cardiac medicine? Expert Rev Cardiovasc Ther 13:1281–1284. https://doi.org/10.1586/14779072.2015.1100076

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Wang KC, Filice RW, Philbin JF, Siegel EL, Nagy PG (2011) Five levels of PACS modularity: integrating 3D and other advanced visualization tools. J Digit Imaging 24:1096–1102. https://doi.org/10.1007/s10278-011-9366-1

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Bruckheimer E, Rotschild C, Dagan T, Amir G, Kaufman A, Gelman S, Birk E (2016) Computer-generated real-time digital holography: first time use in clinical medical imaging. Eur Heart J Cardiovasc Imaging 17:845–849. https://doi.org/10.1093/ehjci/jew087

    Article  PubMed  Google Scholar 

  11. 11.

    Glatz AC, Purrington KS, Klinger A, King AR, Hellinger J, Zhu X, Gruber SB, Gruber PJ (2014) Cumulative exposure to medical radiation for children requiring surgery for congenital heart disease. J Pediatr 164:789–794.e710. https://doi.org/10.1016/j.jpeds.2013.10.074

    Article  PubMed  Google Scholar 

  12. 12.

    Hoffmann A, Engelfriet P, Mulder B (2007) Radiation exposure during follow-up of adults with congenital heart disease. Int J Cardiol 118:151–153. https://doi.org/10.1016/j.ijcard.2006.07.012

    Article  PubMed  Google Scholar 

  13. 13.

    Farooqi KM, Sengupta PP (2015) Echocardiography and three-dimensional printing: sound ideas to touch a heart. J Am Soc Echocardiogr 28:398–403. https://doi.org/10.1016/j.echo.2015.02.005

    Article  PubMed  Google Scholar 

  14. 14.

    Vettukattil JJ, Samuel BP, Gosnell J, Harikrishnan KN (2017) Creation of a 3D printed model: from virtual to physical. In: Farooqi KM (ed) Rapid prototyping in cardiac disease, 1st edn. Springer. https://doi.org/10.1007/978-3-319-53523-4_2

  15. 15.

    Chepelev L, Wake N, Ryan J, Althobaity W, Gupta A, Arribas E, Santiago L, Ballard DH, Wang KC, Weadock W, Ionita CN, Mitsouras D, Morris J, Matsumoto J, Christensen A, Liacouras P, Rybicki FJ, Sheikh A, Printing RSIGfD (2018) Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Print Med 4:11. https://doi.org/10.1186/s41205-018-0030-y

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Costello JP, Olivieri LJ, Su L, Krieger A, Alfares F, Thabit O, Marshall MB, Yoo SJ, Kim PC, Jonas RA, Nath DS (2015) Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis 10:185–190. https://doi.org/10.1111/chd.12238

    Article  PubMed  Google Scholar 

  17. 17.

    Kim MS, Hansgen AR, Wink O, Quaife RA, Carroll JD (2008) Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation 117:2388–2394. https://doi.org/10.1161/CIRCULATIONAHA.107.740977

    Article  PubMed  Google Scholar 

  18. 18.

    Olivieri L, Krieger A, Chen MY, Kim P, Kanter JP (2014) 3D heart model guides complex stent angioplasty of pulmonary venous baffle obstruction in a Mustard repair of D-TGA. Int J Cardiol 172:e297–e298. https://doi.org/10.1016/j.ijcard.2013.12.192

    Article  PubMed  Google Scholar 

  19. 19.

    Schmauss D, Gerber N, Sodian R (2013) Three-dimensional printing of models for surgical planning in patients with primary cardiac tumors. J Thorac Cardiovasc Surg 145:1407–1408. https://doi.org/10.1016/j.jtcvs.2012.12.030

    Article  PubMed  Google Scholar 

  20. 20.

    Schmauss D, Schmitz C, Bigdeli AK, Weber S, Gerber N, Beiras-Fernandez A, Schwarz F, Becker C, Kupatt C, Sodian R (2012) Three-dimensional printing of models for preoperative planning and simulation of transcatheter valve replacement. Ann Thorac Surg 93:e31–e33. https://doi.org/10.1016/j.athoracsur.2011.09.031

    Article  PubMed  Google Scholar 

  21. 21.

    Sodian R, Weber S, Markert M, Loeff M, Lueth T, Weis FC, Daebritz S, Malec E, Schmitz C, Reichart B (2008) Pediatric cardiac transplantation: three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J Thorac Cardiovasc Surg 136:1098–1099. https://doi.org/10.1016/j.jtcvs.2008.03.055

    Article  PubMed  Google Scholar 

  22. 22.

    Vettukattil JJ, Mohammad Nijres B, Gosnell JM, Samuel BP, Haw MP (2019) Three-dimensional printing for surgical planning in complex congenital heart disease. J Card Surg 34:1363–1369. https://doi.org/10.1111/jocs.14180

    Article  PubMed  Google Scholar 

  23. 23.

    Sun Z, Lau I, Wong YH, Yeong CH (2019) Personalized three-dimensional printed models in congenital heart disease. J Clin Med. https://doi.org/10.3390/jcm8040522

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Arafati A, Hu P, Finn JP, Rickers C, Cheng AL, Jafarkhani H, Kheradvar A (2019) Artificial intelligence in pediatric and adult congenital cardiac MRI: an unmet clinical need. Cardiovasc Diagn Ther 9:S310–S325. https://doi.org/10.21037/cdt.2019.06.09

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    O’Neill B, Wang DD, Pantelic M, Song T, Guerrero M, Greenbaum A, O’Neill WW (2015) Reply: the role of 3D printing in structural heart disease: all that glitters is not gold. JACC Cardiovasc Imaging 8:988–989. https://doi.org/10.1016/j.jcmg.2015.04.011

    Article  PubMed  Google Scholar 

  26. 26.

    Anwar S, Singh GK, Miller J, Sharma M, Manning P, Billadello JJ, Eghtesady P, Woodard PK (2018) 3D printing is a transformative technology in congenital heart disease. JACC Basic Transl Sci 3:294–312. https://doi.org/10.1016/j.jacbts.2017.10.003

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Li RA, Keung W, Cashman TJ, Backeris PC, Johnson BV, Bardot ES, Wong AOT, Chan PKW, Chan CWY, Costa KD (2018) Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells. Biomaterials 163:116–127. https://doi.org/10.1016/j.biomaterials.2018.02.024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, Bliley JM, Campbell PG, Feinberg AW (2019) 3D bioprinting of collagen to rebuild components of the human heart. Science (New York NY) 365:482–487. https://doi.org/10.1126/science.aav9051

    CAS  Article  Google Scholar 

  29. 29.

    Simpson JM (2016) Three-dimensional echocardiography in congenital heart disease: the next steps. Arch Cardiovasc Dis 109:81–83. https://doi.org/10.1016/j.acvd.2015.09.010

    Article  PubMed  Google Scholar 

  30. 30.

    Ballocca F, Meier LM, Ladha K, Qua Hiansen J, Horlick EM, Meineri M (2019) Validation of quantitative 3-dimensional transesophageal echocardiography mitral valve analysis using stereoscopic display. J Cardiothorac Vasc Anesth 33:732–741. https://doi.org/10.1053/j.jvca.2018.08.013

    Article  PubMed  Google Scholar 

  31. 31.

    EchoPixel, Inc. (2018) True 3D Viewer User Manual, L edn. EchoPixel, Inc., Santa Clara

    Google Scholar 

  32. 32.

    Imaging Technology News, ITN (2018) EchoPixel showcases next-generation surgical planning with True 3-D interactive mixed reality software. Latest version of True 3-D expands supported modalities beyond CT and MR to include ultrasound with Doppler and C-arm views. Imaging Technology News (ITN), Park Ridge

    Google Scholar 

  33. 33.

    Imaging Technology News, ITN (2017) EchoPixel announces True 3-D print support. Suite of software tools built on EchoPixel’s interactive virtual reality technology aim to provide fast, accurate, 3-D models for a wide range of medical procedures. Imaging Technology News (ITN), Park Ridge

    Google Scholar 

  34. 34.

    Lu J, Ensing G, Ohye R, Romano J, Sassalos P (2019) Virtual reality three-dimensional modeling for congenital heart surgery planning. American Society of Echocardiography (ASE)

  35. 35.

    Haw M, Baliulis G, Hillman N, Samuel B, Gosnell J, Byl J, Vettukattil J (2019) 3D printing and interactive visualization for surgical planning in complex congenital heart disease. Congenital Heart Surgeons’ Society (CHSS)

  36. 36.

    Kaminsky I, Adix M, Choi I (2016) E-010 vessel length spline measurement with EchoPixel True 3D Viewer. J Neurointerv Surg 8:A49.2–A50

    Article  Google Scholar 

  37. 37.

    Mishra S (2017) Hologram the future of medicine—From Star Wars to clinical imaging. Indian Heart J 69:566–567. https://doi.org/10.1016/j.ihj.2017.07.017

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    FDA US (2018) 510(k) Premarket Approval

  39. 39.

    Pace DF, Dalca AV, Geva T, Powell AJ, Moghari MH, Golland P (2015) Interactive whole-heart segmentation in congenital heart disease. Med Image Comput Comput Assist Interv 9351:80–88. https://doi.org/10.1007/978-3-319-24574-4_10

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Pouch AM, Wang H, Takabe M, Jackson BM, Gorman JH, Gorman RC, Yushkevich PA, Sehgal CM (2014) Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling. Med Image Anal 18:118–129. https://doi.org/10.1016/j.media.2013.10.001

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Dilsizian SE, Siegel EL (2014) Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr Cardiol Rep 16:441. https://doi.org/10.1007/s11886-013-0441-8

    Article  PubMed  Google Scholar 

  42. 42.

    Fazal MI, Patel ME, Tye J, Gupta Y (2018) The past, present and future role of artificial intelligence in imaging. Eur J Radiol 105:246–250. https://doi.org/10.1016/j.ejrad.2018.06.020

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joseph J. Vettukattil.

Ethics declarations

Conflict of interest

None.

Research involving human participants and/or animals

N/A.

Informed consent

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 2 (AVI 216195 kb) A 360° visualization in any plane is feasible on True 3D Viewer(EchoPixel, Inc., Santa Clara, CA, USA)

Supplementary Material 3 (AVI 260588 kb) A 360° visualization in any plane is feasible on True 3D Viewer(EchoPixel, Inc., Santa Clara, CA, USA)

Supplementary Material 1 (PDF 9354 kb)3D segmented virtual model

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Byl, J.L., Sholler, R., Gosnell, J.M. et al. Moving beyond two-dimensional screens to interactive three-dimensional visualization in congenital heart disease. Int J Cardiovasc Imaging 36, 1567–1573 (2020). https://doi.org/10.1007/s10554-020-01853-1

Download citation

Keywords

  • 3D imaging
  • Artificial intelligence
  • Congenital heart disease
  • Interactive 3D visualization