Skip to main content

The effect of hyperbaric oxygenation therapy on myocardial function

Abstract

Hyperbaric oxygenation therapy is successfully implemented for the treatment of several disorders. Data on the effect of hyperbaric oxygenation on echocardiographic parameters in asymptomatic patients is limited. The current study sought to evaluate the effect of hyperbaric oxygenation therapy on echocardiographic parameters in asymptomatic patients. Thirty-one consecutive patients underwent a 60-sessions course of hyperbaric oxygenation therapy in an attempt to improve cognitive impairment. In all subjects, echocardiography examination was performed before and after a course of hyperbaric oxygenation therapy. Conventional and speckle tracking imaging parameters were calculated and analyzed. The mean age was 70 ± 9.5 years, 28 [90%] were males. History of coronary artery disease was present in 12 [39%]. 94% suffered from hypertension, 42% had diabetes mellitus. Baseline wall motion abnormalities were found in eight patients, however, global ejection fraction was within normal limits. During the study, ejection fraction [EF], increased from 60.71 ± 6.02 to 62.29 ± 5.19%, p = 0.02. Left ventricular end systolic volume [LVESV], decreased from 38.08 ± 13.30 to 35.39 ± 13.32 ml, p = 0.01. Myocardial performance index [MPi] improved, from 0.29 ± 0.07 to 0.26 ± 0.08, p = 0.03. Left ventricular [LV] global longitudinal strain increased from − 19.31 ± 3.17% to − 20.16 ± 3.34%, p = 0.036 due to improvement in regional strain in the apical and antero-septal segments. Twist increased from 18.32 ± 6.61° to 23.12 ± 6.35° p = 0.01, due to improvement in the apical rotation, from 11.76 ± 4.40° to 16.10 ± 5.56°, p = 0.004. Hyperbaric oxygen therapy appears to improve left ventricular function, especially in the apical segments, and is associated with better cardiac performance. If our results are confirmed in further studies, HBOT can be used in many patients with heart failure and systolic dysfunction.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Fosen KM, Thom SR (2014) Hyperbaric oxygen, vasculogenic stem cells, and wound healing. Antioxid Redox Signal 21(11):1634–1647

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Cimino F, Balestra C, Germonpre P, De Bels D, Tillmans F, Saija A, Speciale A, Virgili F (2012) Pulsed high oxygen induces a hypoxic-like response in human umbilical endothelial cells and in humans. J Appl Physiol 113(11):1684–1689

    CAS  PubMed  Google Scholar 

  3. 3.

    Lin PY, Sung PH, Chung SY, Hsu SL, Chung WJ, Sheu JJ, Hsueh SK, Chen KH, Wu RW, Yip HK (2018) Hyperbaric oxygen therapy enhanced circulating levels of endothelial progenitor cells and angiogenesis biomarkers, blood flow, in ischemic areas in patients with peripheral arterial occlusive disease. J Clin Med 7(12):548

    PubMed Central  Google Scholar 

  4. 4.

    Pena-Villalobos I, Casanova-Maldonado I, Lois P, Prieto C, Pizarro C, Lattus J, Osorio G, Palma V (2018) Hyperbaric oxygen increases stem cell proliferation, angiogenesis and wound-healing ability of WJ-MSCs in diabetic mice. Front Physiol 9:995

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Hadanny A, Lang E, Copel L, Meir O, Bechor Y, Fishlev G, Bergan J, Friedman M, Zisman A, Efrati S (2018) Hyperbaric oxygen can induce angiogenesis and recover erectile function. Int J Impot Res 30(6):292–299

    PubMed  Google Scholar 

  6. 6.

    Tal S, Hadanny A, Berkovitz N, Sasson E, Ben-Jacob E, Efrati S (2015) Hyperbaric oxygen may induce angiogenesis in patients suffering from prolonged post-concussion syndrome due to traumatic brain injury. Restor Neurol Neurosci 33(6):943–951

    CAS  PubMed  Google Scholar 

  7. 7.

    Thom SR, Bhopale VM, Velazquez OC, Goldstein LJ, Thom LH, Buerk DG (2006) Stem cell mobilization by hyperbaric oxygen. Am J Physiology Heart Circ Physiol 290(4):H1378–1386

    CAS  Google Scholar 

  8. 8.

    Heyboer M III, Milovanova TN, Wojcik S, Grant W, Chin M, Hardy KR, Lambert DS, Logue C, Thom SR (2014) CD34+/CD45-dim stem cell mobilization by hyperbaric oxygen—changes with oxygen dosage. Stem Cell Res 12(3):638–645

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Benincasa JC, de Filho LHF, Carneiro GD, Sielski MS, Giorgio S, Werneck CC, Vicente CP (2018) Hyperbaric oxygen affects endothelial progenitor cells proliferation in vitro. Cell Biol Int 43(2):136–146

    Google Scholar 

  10. 10.

    Cabigas BP, Su J, Hutchins W, Shi Y, Schaefer RB, Recinos RF, Nilakantan V, Kindwall E, Niezgoda JA, Baker JE (2006) Hyperoxic and hyperbaric-induced cardioprotection: role of nitric oxide synthase 3. Cardiovasc Res 72(1):143–151

    CAS  PubMed  Google Scholar 

  11. 11.

    Gregorevic P, Lynch GS, Williams DA (2001) Hyperbaric oxygen modulates antioxidant enzyme activity in rat skeletal muscles. Eur J Appl Physiol 86(1):24–27

    CAS  PubMed  Google Scholar 

  12. 12.

    Hirata T, Cui YJ, Funakoshi T, Mizukami Y, Ishikawa Y, Shibasaki F, Matsumoto M, Sakabe T (2007) The temporal profile of genomic responses and protein synthesis in ischemic tolerance of the rat brain induced by repeated hyperbaric oxygen. Brain Res 1130(1):214–222

    CAS  PubMed  Google Scholar 

  13. 13.

    Kim CH, Choi H, Chun YS, Kim GT, Park JW, Kim MS (2001) Hyperbaric oxygenation pretreatment induces catalase and reduces infarct size in ischemic rat myocardium. Pflug Archiv 442(4):519–525

    CAS  Google Scholar 

  14. 14.

    Nie H, Xiong L, Lao N, Chen S, Xu N, Zhu Z (2006) Hyperbaric oxygen preconditioning induces tolerance against spinal cord ischemia by upregulation of antioxidant enzymes in rabbits. J Cereb Blood Flow Metab 26(5):666–674

    CAS  PubMed  Google Scholar 

  15. 15.

    Abu-Soud HM, Rousseau DL, Stuehr DJ (1996) Nitric oxide binding to the heme of neuronal nitric-oxide synthase links its activity to changes in oxygen tension. J Biol Chem 271(51):32515–32518

    CAS  PubMed  Google Scholar 

  16. 16.

    Daugherty WP, Levasseur JE, Sun D, Rockswold GL, Bullock MR (2004) Effects of hyperbaric oxygen therapy on cerebral oxygenation and mitochondrial function following moderate lateral fluid-percussion injury in rats. J Neurosurg 101(3):499–504

    PubMed  Google Scholar 

  17. 17.

    Zhou Z, Daugherty WP, Sun D, Levasseur JE, Altememi N, Hamm RJ, Rockswold GL, Bullock MR (2007) Protection of mitochondrial function and improvement in cognitive recovery in rats treated with hyperbaric oxygen following lateral fluid-percussion injury. J Neurosurg 106(4):687–694

    CAS  PubMed  Google Scholar 

  18. 18.

    Palzur E, Zaaroor M, Vlodavsky E, Milman F, Soustiel JF (2008) Neuroprotective effect of hyperbaric oxygen therapy in brain injury is mediated by preservation of mitochondrial membrane properties. Brain Res 1221:126–133

    CAS  PubMed  Google Scholar 

  19. 19.

    Boussi-Gross R, Golan H, Fishlev G, Bechor Y, Volkov O, Bergan J, Friedman M, Hoofien D, Shlamkovitch N, Ben-Jacob E, Efrati S (2013) Hyperbaric oxygen therapy can improve post concussion syndrome years after mild traumatic brain injury—randomized prospective trial. PLoS ONE 8(11):e79995

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Efrati S, Ben-Jacob E (2014) Reflections on the neurotherapeutic effects of hyperbaric oxygen. Expert Review Neurother 14(3):233–236

    CAS  Google Scholar 

  21. 21.

    Hadanny A, Golan H, Fishlev G, Bechor Y, Volkov O, Suzin G, Ben-Jacob E, Efrati S (2015) Hyperbaric oxygen can induce neuroplasticity and improve cognitive functions of patients suffering from anoxic brain damage. Restore Neurol Neurosci 33(4):471–486

    CAS  Google Scholar 

  22. 22.

    Molenat F, Boussuges A, Grandfond A, Rostain JC, Sainty JM, Robinet C, Galland F, Meliet JL (2004) Haemodynamic effects of hyperbaric hyperoxia in healthy volunteers: an echocardiographic and Doppler study. Clin Sci 106(4):389–395

    PubMed  Google Scholar 

  23. 23.

    Frobert O, Moesgaard J, Toft E, Poulsen SH, Sogaard P (2004) Influence of oxygen tension on myocardial performance. Evaluation by tissue Doppler imaging. Cardiovasc Ultrasound 2:22

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Oyaizu T, Enomoto M, Yamamoto N, Tsuji K, Horie M, Muneta T, Sekiya I, Okawa A, Yagishita K (2018) Hyperbaric oxygen reduces inflammation, oxygenates injured muscle, and regenerates skeletal muscle via macrophage and satellite cell activation. Sci Rep 8(1):1288

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Gregorevic P, Lynch GS, Williams DA (2000) Hyperbaric oxygen improves contractile function of regenerating rat skeletal muscle after myotoxic injury. J Appl Physiol 89(4):1477–1482

    CAS  PubMed  Google Scholar 

  26. 26.

    Gregorevic P, Williams DA, Lynch GS (2002) Hyperbaric oxygen increases the contractile function of regenerating rat slow muscles. Med Sci Sports Exerc 34(4):630–636

    PubMed  Google Scholar 

  27. 27.

    Horie M, Enomoto M, Shimoda M, Okawa A, Miyakawa S, Yagishita K (2014) Enhancement of satellite cell differentiation and functional recovery in injured skeletal muscle by hyperbaric oxygen treatment. J Appl Physiol 116(2):149–155

    CAS  PubMed  Google Scholar 

  28. 28.

    Suzuki J (2017) Endurance performance is enhanced by intermittent hyperbaric exposure via up-regulation of proteins involved in mitochondrial biogenesis in mice. Physiol Rep 5(15):e13349

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kurt B, Kurt Y, Karslioglu Y, Topal T, Erdamar H, Korkmaz A, Türközkan N, Yaman H, Odabaşi Z, Günhan O (2008) Effects of hyperbaric oxygen on energy production and xanthine oxidase levels in striated muscle tissue of healthy rats. J Clin Neurosci 15(4):445–450

    CAS  PubMed  Google Scholar 

  30. 30.

    Li Y, Hao Y, Wang T, Wei L, Wang W, Liang Y, Guo X (2018) The Effect of hyperbaric oxygen therapy on myocardial perfusion after the implantation of drug-eluting stents. Ann Clin Lab Sci 48(2):158–163

    CAS  PubMed  Google Scholar 

  31. 31.

    Aparci M, Kardesoglu E, Suleymanoglu S, Uzun G, Onem Y, Uz O, Kucukardali Y, Ozkan S (2008) Hyperbaric oxygen therapy improves myocardial diastolic function in diabetic patients. Tohoku J Exp Med 214(3):281–289

    PubMed  Google Scholar 

  32. 32.

    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for quantification by cardiac chamber echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16(3):233–270

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Popescu AB, Waggoner AD (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the american society of echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 17(12):1321–1360

    PubMed  Google Scholar 

  34. 34.

    Tei C, Ling LH, Hodge DO, Bailey KR, Oh JK, Rodeheffer RJ, Tajik AJ, Seward JB (1995) New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function—a study in normals and dilated cardiomyopathy. J Cardiol 26(6):357–366

    CAS  PubMed  Google Scholar 

  35. 35.

    Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, Kaluski E, Krakover R, Vered Z (2004) Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 17(10):1021–1029

    PubMed  Google Scholar 

  36. 36.

    Henson RE, Song SK, Pastorek JS, Ackerman JJ, Lorenz CH (2000) Left ventricular torsion is equal in mice and humans. Am J Physiol Heart Circ Physiol 278:H1117–H1123

    CAS  PubMed  Google Scholar 

  37. 37.

    Park JH, Choi JO, Park SW, Cho GY, Oh JK, Lee JH, Seong IW (2018) Normal references of right ventricular strain values by two-dimensional strain echocardiography according to the age and gender. Int J Cardiovasc Imaging 34(2):177–183

    PubMed  Google Scholar 

  38. 38.

    Lee JH, Park JH (2018) strain analysis of the right ventricle using two-dimensional echocardiography. J Cardiovasc Imaging 26(3):111–124

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Burns AT, La Gerche A, Prior DL, Macisaac AI (2009) Left ventricular untwisting is an important determinant of early diastolic function. JACC Cardiovasc Imaging 2(6):709–716

    PubMed  Google Scholar 

  40. 40.

    Wang J, Khoury DS, Thohan V, Torre-Amione G, Nagueh SF (2007) Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures. Circulation 115(11):1376–1383

    PubMed  Google Scholar 

  41. 41.

    Foster GE, Sheel AW (2005) The human diving response, its function, and its control. Scand J Med Sci Sports 15(1):3–12

    CAS  PubMed  Google Scholar 

  42. 42.

    Demchenko IT, Zhilyaev SY, Moskvin AN, Krivchenko AI, Piantadosi CA, Allen BW (2013) Baroreflex-mediated cardiovascular responses to hyperbaric oxygen. J Appl Physiol 115(6):819–828

    CAS  PubMed  Google Scholar 

  43. 43.

    Heyboer RdM, Wojcik SM, Smith G, Santiago W (2017) Effect of hyperbaric oxygen therapy on blood pressure in patients undergoing treatment. Undersea Hyperb Med 44(2):93–99

    Google Scholar 

  44. 44.

    Weaver Lindell K, Churchill S (2001) Pulmonary edema associated with hyperbaric oxygen therapy. Chest 120:1407–1409

    Google Scholar 

  45. 45.

    Heyboer M 3rd (2018) Hyperbaric oxygen therapy side effects—where do we stand? J Am Coll Clin Wound Spec 8(1–3):2–3

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Wunderlich T, Frey N, Kähler W, Lutz M, Radermacher P, Klapa S, Koch I, Tillmans F, Witte J, Koch A (2017) Influence of hyperoxia on diastolic myocardial and arterial endothelial function. Undersea Hyperb Med 44(6):521–533

    CAS  PubMed  Google Scholar 

  47. 47.

    Emelyanova L, Preston C, Gupta A, Viqar M, Negmadjanov U, Edwards S, Kraft K, Devana K, Holmuhamedov E, O'Hair D, Tajik AJ, Jahangir A (2018) Effect of aging on mitochondrial energetics in the human atria. J Gerontol A 73(5):608–616

    CAS  Google Scholar 

  48. 48.

    Gutsaeva DR, Suliman HB, Carraway MS, Demchenko IT, Piantadosi CA (2006) Oxygen-induced mitochondrial biogenesis in the rat hippocampus. Neuroscience 137(2):493–504

    CAS  PubMed  Google Scholar 

  49. 49.

    Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C (2005) Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J 19(3):419–421

    CAS  PubMed  Google Scholar 

  50. 50.

    Lesnefsky EJ, Chen Q, Hoppel CL (2016) Mitochondrial metabolism in aging heart. Circ Res 118(10):1593–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Dai D-F, Chen T, Johnson SC, Szeto H, Rabinovitch PS (2012) Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 16(12):1492–1526

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marina Leitman.

Ethics declarations

Conflict of interest

There is no conflict of interests.

Ethical approval

Our study was approved by the local Helsinki Committee and was done in accordance with the ethical standards of the local Helsinki Committee.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

10554_2020_1773_MOESM1_ESM.avi

Video 1. Apical 3-chamber view of a 68-year old healthy man, mentioned in figure 1, before and after HBOT therapy. After HBOT contraction of the left ventricle improved. A. Before HBOT. B. After HBOT (AVI 1946 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leitman, M., Efrati, S., Fuchs, S. et al. The effect of hyperbaric oxygenation therapy on myocardial function. Int J Cardiovasc Imaging 36, 833–840 (2020). https://doi.org/10.1007/s10554-020-01773-0

Download citation

Keywords

  • Hyperbaric oxygenation
  • Echocardiography
  • Cardiac function