Skip to main content
Log in

Evolution of strain and strain rate values throughout gestation in healthy fetuses

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Myocardial deformation by speckle tracking echocardiography is a novel method for evaluating cardiac function. To test the hypothesis that right ventricular and left ventricular function have age-specific patterns of development, we tracked the evolution of ventricular strain mechanics by speckle tracking echocardiography in the fetus. We conducted a retrospective cross sectional echocardiography study in 154 healthy fetuses, and characterized cardiac function by measuring right and left ventricles global longitudinal strain and strain rate. Comparison of the data of both ventricles according to gestational age was carried out. The magnitudes of right and left ventricle global longitudinal strain show wide range values and decreased throughout gestation. Strain values are higher in left ventricle compared to the right one throughout pregnancy. Strain rate values were similar over gestation in each ventricle, but the magnitudes declined overtime in the right and left ventricle. The maturational patterns of left and right strain are gestational specific. With accepted physiological maturation patterns in healthy subjects, these myocardial deformation parameters can provide a valid basis that allows comparison between health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Poveda F, Gil D, Martí E, Andaluz A, Ballester M, Carreras F (2013) Estudio tractográfico de la anatomía helicoidal del miocardio ventricular mediante resonancia magnética por tensor de difusión. Rev Esp Cardiol 66:782–790. https://doi.org/10.1016/j.recesp.2013.04.022

    Article  PubMed  Google Scholar 

  2. Rodríguez-Bailón I, Jiménez-Navarro MF, Pérez-González R, García-Orta R, Morillo-Velarde E, De Teresa-Galván E (2010) Deformación ventricular izquierda en ecocardiografía bidimensional: valores y tiempos en sujetos normales. Rev Esp Cardiol 63:1195–1199. https://doi.org/10.1016/S0300-8932(10)70252-9

    Article  PubMed  Google Scholar 

  3. Zaca V, Ballo P, Galderisi M et al (2010) Echocardiography in the assessment of left ventricular longitudinal systolic function: current methodology and clinical applications. Heart Fail Rev 15:23–37

    Article  Google Scholar 

  4. Kocabay G, Muraru D, Peluso D et al (2014) Mecánica ventricular izquierda normal mediante ecocardiografí a speckle tracking bidimensional. Valores de referencia para adultos sanos. Rev Esp Cardiol 67:651–658. https://doi.org/10.1016/j.recesp.2013.12.011

    Article  PubMed  Google Scholar 

  5. Perk G, Tunick PA, Kronzon I (2007) Non-Doppler two-dimensional strain imaging by echocardiography-from technical considerations to clinical applications. J Am Soc Echocardiogr 20:234–243. https://doi.org/10.1016/j.echo.2006.08.023

    Article  PubMed  Google Scholar 

  6. Morris DA, Takeuchi M, Krisper M et al (2015) Normal values and clinical relevance of left atrial myocardial function analysed by speckle-tracking echocardiography:multicentre study. Eur Heart J Cardiovasc Imaging 16:364–372. https://doi.org/10.1093/ehjci/jeu219

    Article  PubMed  Google Scholar 

  7. Rai ABS, Lima E, Munir F et al (2015) Speckle tracking echocardiography of the right atrium: the neglected chamber. Clin Cardiol 38:692–697. https://doi.org/10.1002/clc.22438

    Article  PubMed  PubMed Central  Google Scholar 

  8. Thavendiranathan P, Poulin F, Lim K-D, Plana JC, Woo A, Marwick TH (2014) Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy. J Am Coll Cardiol 63:2751–2768. https://doi.org/10.1016/j.jacc.2014.01.073

    Article  PubMed  Google Scholar 

  9. Vitarelli A, Martino F, Capotosto L et al (2014) Early myocardial deformation changes in hypercholesterolemic and obese children and adolescents. Medicine (Baltimore) 93:e71. https://doi.org/10.1097/MD.0000000000000071

    Article  CAS  Google Scholar 

  10. Lorch SM, Ludomirsky A, Singh GK (2008) Maturational and growth-related changes in left ventricular longitudinal strain and strain rate measured by two-dimensional speckle tracking echocardiography in healthy pediatric population. J Am Soc Echocardiogr 21:1207–1215. https://doi.org/10.1016/j.echo.2008.08.011

    Article  PubMed  Google Scholar 

  11. Takigiku K, Takeuchi M, Izumi C et al (2012) Normal range of left ventricular 2-dimensional strain. Circ J 76:2623–2632. https://doi.org/10.1253/circj.CJ-12-0264

    Article  PubMed  Google Scholar 

  12. Klitsie LM, Roest AAW, Van Der Hulst AE, Stijnen T, Blom NA, Ten Harkel ADJ (2013) Assessment of intraventricular time differences in healthy children using two-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr 26:629–639. https://doi.org/10.1016/j.echo.2013.03.006

    Article  PubMed  Google Scholar 

  13. Marcus KA, Mavinkurve-Groothuis AMC, Barends M et al (2011) Reference values for myocardial two-dimensional strain echocardiography in a healthy pediatric and young adult cohort. J Am Soc Echocardiogr 24:625–636. https://doi.org/10.1016/j.echo.2011.01.021

    Article  PubMed  Google Scholar 

  14. Levy PT, Machefsky A, Sanchez AA et al (2016) Reference ranges of left ventricular strain measures by two-dimensional speckle-tracking echocardiography in children: a systematic review and meta-analysis. J Am Soc Echocardiogr 29:209–225. https://doi.org/10.1016/j.echo.2015.11.016

    Article  PubMed  Google Scholar 

  15. Jashari H, Rydberg A, Ibrahimi P et al (2015) Normal ranges of left ventricular strain in children: a meta-analysis. Cardiovasc Ultrasound 13:1–16. https://doi.org/10.1186/s12947-015-0029-0

    Article  Google Scholar 

  16. Peng QH, Zhou QC, Zeng S et al (2009) Evaluation of regional left ventricular longitudinal function in 151 normal fetuses using velocity vector imaging. Prenat Diagn. https://doi.org/10.1002/pd.2386

    Article  PubMed  Google Scholar 

  17. Barker PCA, Houle H, Li JS, Miller S, Herlong JR, Camitta MGW (2009) Global longitudinal cardiac strain and strain rate for assessment of fetal cardiac function: novel experience with velocity vector imaging. Echocardiography. https://doi.org/10.1111/j.1540-8175.2008.00761.x

    Article  PubMed  Google Scholar 

  18. Willruth AM, Geipel AK, Fimmers R, Gembruch UG (2011) Assessment of right ventricular global and regional longitudinal peak systolic strain, strain rate and velocity in healthy fetuses and impact of gestational age using a novel speckle/feature-tracking based algorithm. Ultrasound Obstet Gynecol 37:143–149. https://doi.org/10.1002/uog.7719

    Article  CAS  PubMed  Google Scholar 

  19. D’Hooge J, Bijnens B, Jamal F et al (2000) High frame rate myocardial integrated backscatter: does this change our understanding of this acoustic parameter? Eur J Echocardiogr. https://doi.org/10.1053/euje.2000.0004

    Article  PubMed  Google Scholar 

  20. Enzensberger C, Achterberg F, Graupner O, Wolter A, Herrmann J, Axt-Fliedner R (2017) Wall-motion tracking in fetal echocardiography—influence of frame rate on longitudinal strain analysis assessed by two-dimensional speckle tracking. Echocardiography. https://doi.org/10.1111/echo.13542

    Article  PubMed  Google Scholar 

  21. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16:233–271. https://doi.org/10.1093/ehjci/jev014

    Article  PubMed  Google Scholar 

  22. Kim SH, Miyakoshi K, Kadohira I et al (2013) Comparison of the right and left ventricular performance during the fetal development using velocity vector imaging. Early Hum Dev 89:675–681. https://doi.org/10.1016/j.earlhumdev.2013.04.015

    Article  PubMed  Google Scholar 

  23. Maskatia SA, Pignatelli RH, Ayres NA, Altman CA, Sangi-Haghpeykar H, Lee W (2016) Fetal and neonatal diastolic myocardial strain rate: normal reference ranges and reproducibility in a prospective, longitudinal cohort of pregnancies. J Am Soc Echocardiogr 29:663–669. https://doi.org/10.1016/j.echo.2016.02.017

    Article  PubMed  Google Scholar 

  24. Michelfelder E, Allen C, Urbinelli L (2016) Evaluation and management of fetal cardiac function and heart failure. Curr Treat Options Cardiovasc Med. https://doi.org/10.1007/s11936-016-0477-3

    Article  PubMed  Google Scholar 

  25. Godfrey ME, Messing B, Cohen SM, Valsky DV, Yagel S (2012) Functional assessment of the fetal heart: a review. Ultrasound Obstet Gynecol 39:131–144. https://doi.org/10.1002/uog.9064

    Article  CAS  PubMed  Google Scholar 

  26. Messing B, Gilboa Y, Lipschuetz M, Valsky DV, Cohen SM, Yagel S (2013) Fetal tricuspid annular plane systolic excursion (f-TAPSE): Evaluation of fetal right heart systolic function with conventional M-mode ultrasound and spatiotemporal image correlation (STIC) M-mode. Ultrasound Obstet Gynecol 42:182–188. https://doi.org/10.1002/uog.12375

    Article  CAS  PubMed  Google Scholar 

  27. Tedesco GD, De Souza Bezerra M, Barros FSB et al (2017) Fetal heart function by tricuspid annular plane systolic excursion and ventricular shortening fraction using STIC M-Mode: reference ranges and validation. Am J Perinatol 34:1354–1361. https://doi.org/10.1055/s-0037-1603652

    Article  PubMed  Google Scholar 

  28. Zheng M, Schaal M, Chen Y et al (2013) Real-time 3-dimensional echocardiographic assessment of ventricular volume, mass, and function in human fetuses. PLoS ONE. https://doi.org/10.1371/journal.pone.0058494

    Article  PubMed  PubMed Central  Google Scholar 

  29. DeVore GR (2005) Assessing fetal cardiac ventricular function. Semin Fetal Neonatal Med 10:515–541. https://doi.org/10.1016/j.siny.2005.08.009

    Article  PubMed  Google Scholar 

  30. Gabbay-Benziv R, Turan OM, Harman C, Turan S (2015) Nomograms for fetal cardiac ventricular width and right-to-left ventricular ratio. J Ultrasound Med 34:2049–2055. https://doi.org/10.7863/ultra.14.10022

    Article  PubMed  Google Scholar 

  31. Di Salvo G, Russo MG, Paladini D et al (2008) Two-dimensional strain to assess regional left and right ventricular longitudinal function in 100 normal foetuses. Eur J Echocardiogr 9:754–756. https://doi.org/10.1093/ejechocard/jen134

    Article  PubMed  Google Scholar 

  32. Kapusta L, Mainzer G, Weiner Z et al (2012) Second trimester ultrasound: reference values for two-dimensional speckle tracking-derived longitudinal strain, strain rate and time to peak deformation of the fetal heart. J Am Soc Echocardiogr 25:1333–1341. https://doi.org/10.1016/j.echo.2012.09.011

    Article  PubMed  Google Scholar 

  33. Kapusta L, Mainzer G, Weiner Z et al (2013) Changes in fetal left and right ventricular strain mechanics during normal pregnancy. J Am Soc Echocardiogr 26(10):1193–1200. https://doi.org/10.1016/j.echo.2013.06.007

    Article  PubMed  Google Scholar 

  34. Corella Aznar EG, Ayerza Casas A, Jiménez Montañés L, Calvo Escribano MÁC, Labarta Aizpún JI, Samper Villagrasa P (2018) Use of speckle tracking in the evaluation of late subclinical myocardial damage in survivors of childhood acute leukaemia. Int J Cardiovasc Imaging. https://doi.org/10.1007/s10554-018-1346-9

    Article  PubMed  Google Scholar 

Download references

Funding

This investigation has no external funding source

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Clavero Adell.

Ethics declarations

Conflict of interest

Authors declare not having conflict of interest. Authors have full control of all primary data and agree to allow the journal to review their data if requested.

Ethical approval

The working model was approved by the Clinical Research Ethics Committee of Aragón (CEICA).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clavero Adell, M., Ayerza Casas, A., Jiménez Montañés, L. et al. Evolution of strain and strain rate values throughout gestation in healthy fetuses. Int J Cardiovasc Imaging 36, 59–66 (2020). https://doi.org/10.1007/s10554-019-01695-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-019-01695-6

Keywords

Navigation