Skip to main content
Log in

Correlation between left ventricular myocardial strain and left ventricular geometry in healthy adults: a cardiovascular magnetic resonance-feature tracking study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

This study was aimed to investigate the correlation between left ventricular (LV) myocardial strain and LV geometry in healthy adults using cardiovascular magnetic resonance-feature tracking (CMR-FT). 124 gender-matched healthy adults who underwent healthy checkup using CMR cine imaging were retrospectively analyzed. Peak global radial, circumferential, longitudinal strain (GRS, GCS and GLS) for left ventricle were measured. LV geometry was assessed by the ratio of LV mass (LVM) and end-diastolic volume (EDV). GRS, GCS and GLS were 34.18 ± 6.71%, − 22.17 ± 2.28%, − 14.76 ± 2.39% for men, and 33.40 ± 6.95%, − 22.49 ± 2.27%, − 15.72 ± 2.36% for women. Multiple linear regression showed that LVM/EDV was associated with decreased GLS (β = − 0.297, p = 0.005), but was not significantly associated with GRS and GCS (both p > 0.05). There was an increase in the magnitude of GRS, GCS and GLS with advancing age (β = 0.254, β = 0.466 and β = 0.313, all p < 0.05). Greater BMI was associated with decreased GRS, GCS and GLS (β = − 0.232, β = − 0. 249 and β = − 0.279, all p < 0.05). In conclusion, compared with GRS and GCS, GLS is more sensitive to assess LV concentric remodeling in healthy adults. GRS, GCS and GLS are all independently positively associated with age and negatively associated with BMI. Sex-based LV strain reference values for healthy Chinese adults are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Claus P, Omar AMS, Pedrizzetti G, Sengupta PP, Nagel E (2015) Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications. JACC Cardiovascular imaging 8(12):1444–1460. https://doi.org/10.1016/j.jcmg.2015.11.001

    Article  PubMed  Google Scholar 

  2. Schuster A, Hor KN, Kowallick JT, Beerbaum P, Kutty S (2016) Cardiovascular magnetic resonance myocardial feature tracking: concepts and clinical applications. Circ Cardiovasc Imaging 9(4):e004077. https://doi.org/10.1161/CIRCIMAGING.115.004077

    Article  PubMed  Google Scholar 

  3. Schmidt B, Dick A, Treutlein M, Schiller P, Bunck AC, Maintz D, Baessler B (2017) Intra- and inter-observer reproducibility of global and regional magnetic resonance feature tracking derived strain parameters of the left and right ventricle. Eur J Radiol 89:97–105. https://doi.org/10.1016/j.ejrad.2017.01.025

    Article  PubMed  Google Scholar 

  4. Satriano A, Heydari B, Narous M, Exner DV, Mikami Y, Attwood MM, Tyberg JV, Lydell CP, Howarth AG, Fine NM, White JA (2017) Clinical feasibility and validation of 3D principal strain analysis from cine MRI: comparison to 2D strain by MRI and 3D speckle tracking echocardiography. Int J Cardiovasc Imaging 33(12):1979–1992. https://doi.org/10.1007/s10554-017-1199-7

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lapinskas T, Grune J, Zamani SM, Jeuthe S, Messroghli D, Gebker R, Meyborg H, Kintscher U, Zaliunas R, Pieske B, Stawowy P, Kelle S (2017) Cardiovascular magnetic resonance feature tracking in small animals—a preliminary study on reproducibility and sample size calculation. BMC Med Imaging 17(1):51. https://doi.org/10.1186/s12880-017-0223-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Salvetti M, Paini A, Facchetti R, Moreo A, Carerj S, Cesana F, Gaibazzi N, Faggiano P, Mureddu G, Rigo F, Giannattasio C, Muiesan ML, Group AS (2019) Relationship between vascular damage and left ventricular concentric geometry in patients undergoing coronary angiography: a multicenter prospective study. J Hypertens 1:1. https://doi.org/10.1097/HJH.0000000000002052

    Article  CAS  Google Scholar 

  7. Desai CS, Bartz TM, Gottdiener JS, Lloyd-Jones DM, Gardin JM (2016) Usefulness of left ventricular mass and geometry for determining 10-year prediction of cardiovascular disease in adults aged > 65 years (from the Cardiovascular Health Study). Am J Cardiol 118(5):684–690. https://doi.org/10.1016/j.amjcard.2016.06.016

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mizuguchi Y, Oishi Y, Miyoshi H, Iuchi A, Nagase N, Oki T (2010) Concentric left ventricular hypertrophy brings deterioration of systolic longitudinal, circumferential, and radial myocardial deformation in hypertensive patients with preserved left ventricular pump function. J Cardiol 55(1):23–33. https://doi.org/10.1016/j.jjcc.2009.07.006

    Article  PubMed  Google Scholar 

  9. Xu HY, Chen J, Yang ZG, Li R, Shi K, Zhang Q, Liu X, Xie LJ, Jiang L, Guo YK (2017) Early marker of regional left ventricular deformation in patients with hypertrophic cardiomyopathy evaluated by MRI tissue tracking: The effects of myocardial hypertrophy and fibrosis. J Magn Reson Imaging 46(5):1368–1376. https://doi.org/10.1002/jmri.25681

    Article  PubMed  Google Scholar 

  10. Mandry D, Eschalier R, Kearney-Schwartz A, Rossignol P, Joly L, Djaballah W, Bohme P, Escanye JM, Vuissoz PA, Fay R, Zannad F, Marie PY (2012) Comprehensive MRI analysis of early cardiac and vascular remodeling in middle-aged patients with abdominal obesity. J Hypertens 30(3):567–573. https://doi.org/10.1097/HJH.0b013e32834f6f3f

    Article  CAS  PubMed  Google Scholar 

  11. Akasheva DU, Plokhova EV, Tkacheva ON, Strazhesko ID, Dudinskaya EN, Kruglikova AS, Pykhtina VS, Brailova NV, Pokshubina IA, Sharashkina NV, Agaltsov MV, Skvortsov D, Boytsov SA (2015) Age-related left ventricular changes and their association with leukocyte telomere length in healthy people. PLoS ONE 10(8):e0135883. https://doi.org/10.1371/journal.pone.0135883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stewart MH, Lavie CJ, Shah S, Englert J, Gilliland Y, Qamruddin S, Dinshaw H, Cash M, Ventura H, Milani R (2018) Prognostic implications of left ventricular hypertrophy. Prog Cardiovasc Dis 61(5–6):446–455. https://doi.org/10.1016/j.pcad.2018.11.00213

    Article  PubMed  Google Scholar 

  13. Nadruz W (2015) Myocardial remodeling in hypertension. J Hum Hypertens 29(1):1–6. https://doi.org/10.1038/jhh.2014.36

    Article  CAS  PubMed  Google Scholar 

  14. Strain WD, Chaturvedi N, Hughes A, Nihoyannopoulos P, Bulpitt CJ, Rajkumar C, Shore AC (2010) Associations between cardiac target organ damage and microvascular dysfunction: the role of blood pressure. J Hypertens 28(5):952–958. https://doi.org/10.1097/HJH.0b013e328336ad6c

    Article  CAS  PubMed  Google Scholar 

  15. Kalam K, Otahal P, Marwick TH (2014) Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart (British Cardiac Society) 100(21):1673–1680. https://doi.org/10.1136/heartjnl-2014-305538

    Article  Google Scholar 

  16. Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH (1981) Left ventricular fibre architecture in man. British heart journal 45(3):248–263

    Article  CAS  Google Scholar 

  17. Keddeas VW, Swelim SM, Selim GK (2017) Role of 2D speckle tracking echocardiography in predicting acute coronary occlusion in patients with non ST-segment elevation myocardial infarction. Egypt Heart J 69(2):103–110. https://doi.org/10.1016/j.ehj.2016.10.005

    Article  PubMed  Google Scholar 

  18. Russo C, Jin Z, Elkind MS, Rundek T, Homma S, Sacco RL, Di Tullio MR (2014) Prevalence and prognostic value of subclinical left ventricular systolic dysfunction by global longitudinal strain in a community-based cohort. Eur J Heart Fail 16(12):1301–1309. https://doi.org/10.1002/ejhf.154

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu B, Dardeer AM, Moody WE, Hayer MK, Baig S, Price AM, Leyva F, Edwards NC, Steeds RP (2018) Reference ranges for three-dimensional feature tracking cardiac magnetic resonance: comparison with two-dimensional methodology and relevance of age and gender. Int J Cardiovasc Imaging 34(5):761–775. https://doi.org/10.1007/s10554-017-1277-x

    Article  PubMed  Google Scholar 

  20. Andre F, Robbers-Visser D, Helling-Bakki A, Foll A, Voss A, Katus HA, Helbing WA, Buss SJ, Eichhorn JG (2016) Quantification of myocardial deformation in children by cardiovascular magnetic resonance feature tracking: determination of reference values for left ventricular strain and strain rate. J Cardiovasc Magn Reson 19(1):8. https://doi.org/10.1186/s12968-016-0310-x

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sun JP, Popovic ZB, Greenberg NL, Xu XF, Asher CR, Stewart WJ, Thomas JD (2004) Noninvasive quantification of regional myocardial function using Doppler-derived velocity, displacement, strain rate, and strain in healthy volunteers: effects of aging. J Am Soc Echocardiogr 17(2):132–138. https://doi.org/10.1016/j.echo.2003.10.001

    Article  PubMed  Google Scholar 

  22. Liu H, Yang D, Luo Y, Wan K, Wang SM, Zhang TJ, Li WH, Zhang Q, Chen YC, Sun JY (2016) Reference values for left ventricular myocardial strains measured by feature-tracking magnetic resonance imaging in chinese han population. Sichuan da xue xue bao Yi xue ban—J Sichuan Univ Med Sci Ed 47(4):599–604

    Google Scholar 

  23. Peng J, Zhao X, Zhao L, Fan Z, Wang Z, Chen H, Leng S, Allen J, Tan RS, Koh AS, Ma X, Lou M, Zhong L (2018) Normal values of myocardial deformation assessed by cardiovascular magnetic resonance feature tracking in a healthy chinese population: a multicenter study. Front Physiol 9:1181. https://doi.org/10.3389/fphys.2018.01181

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jing L, Binkley CM, Suever JD, Umasankar N, Haggerty CM, Rich J, Wehner GJ, Hamlet SM, Powell DK, Radulescu A, Kirchner HL, Epstein FH, Fornwalt BK (2016) Cardiac remodeling and dysfunction in childhood obesity: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 18(1):28. https://doi.org/10.1186/s12968-016-0247-0

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mangner N, Scheuermann K, Winzer E, Wagner I, Hoellriegel R, Sandri M, Zimmer M, Mende M, Linke A, Kiess W, Schuler G, Korner A, Erbs S (2014) Childhood obesity: impact on cardiac geometry and function. JACC Cardiovasc Imag 7(12):1198–1205. https://doi.org/10.1016/j.jcmg.2014.08.006

    Article  Google Scholar 

  26. Di Salvo G, Pacileo G, Del Giudice EM, Natale F, Limongelli G, Verrengia M, Rea A, Fratta F, Castaldi B, D'Andrea A, Calabro P, Miele T, Coppola F, Russo MG, Caso P, Perrone L, Calabro R (2006) Abnormal myocardial deformation properties in obese, non-hypertensive children: an ambulatory blood pressure monitoring, standard echocardiographic, and strain rate imaging study. Eur Heart J 27(22):2689–2695. https://doi.org/10.1093/eurheartj/ehl163

    Article  PubMed  Google Scholar 

  27. Wong CY, O'Moore-Sullivan T, Leano R, Byrne N, Beller E, Marwick TH (2004) Alterations of left ventricular myocardial characteristics associated with obesity. Circulation 110(19):3081–3087. https://doi.org/10.1161/01.CIR.0000147184.13872.0F

    Article  Google Scholar 

  28. Saltijeral A, Isla LP, Perez-Rodriguez O, Rueda S, Fernandez-Golfin C, Almeria C, Rodrigo JL, Gorissen W, Rementeria J, Marcos-Alberca P, Macaya C, Zamorano J (2011) Early myocardial deformation changes associated to isolated obesity: a study based on 3D-wall motion tracking analysis. Obesity 19(11):2268–2273. https://doi.org/10.1038/oby.2011.157

    Article  PubMed  Google Scholar 

  29. Cheng S, Larson MG, McCabe EL, Osypiuk E, Lehman BT, Stanchev P, Aragam J, Benjamin EJ, Solomon SD, Vasan RS (2013) Age- and sex-based reference limits and clinical correlates of myocardial strain and synchrony: the Framingham Heart Study. Circ Cardiovasc Imaging 6(5):692–699. https://doi.org/10.1161/CIRCIMAGING.112.000627

    Article  PubMed  Google Scholar 

  30. Galderisi M, Lomoriello VS, Santoro A, Esposito R, Olibet M, Raia R, Di Minno MN, Guerra G, Mele D, Lombardi G (2010) Differences of myocardial systolic deformation and correlates of diastolic function in competitive rowers and young hypertensives: a speckle-tracking echocardiography study. J Am Soc Echocardiogr 23(11):1190–1198. https://doi.org/10.1016/j.echo.2010.07.010

    Article  PubMed  Google Scholar 

  31. Galderisi M, Esposito R, Schiano-Lomoriello V, Santoro A, Ippolito R, Schiattarella P, Strazzullo P, de Simone G (2012) Correlates of global area strain in native hypertensive patients: a three-dimensional speckle-tracking echocardiography study. Eur Heart J Cardiovasc Imaging 13(9):730–738. https://doi.org/10.1093/ehjci/jes026

    Article  PubMed  Google Scholar 

  32. Moody WE, Taylor RJ, Edwards NC, Chue CD, Umar F, Taylor TJ, Ferro CJ, Young AA, Townend JN, Leyva F, Steeds RP (2015) Comparison of magnetic resonance feature tracking for systolic and diastolic strain and strain rate calculation with spatial modulation of magnetization imaging analysis. J Magn Reson Imaging 41(4):1000–1012. https://doi.org/10.1002/jmri.2462333

    Article  PubMed  Google Scholar 

  33. Moreira HT, Nwabuo CC, Armstrong AC, Kishi S, Gjesdal O, Reis JP, Schreiner PJ, Liu K, Lewis CE, Sidney S, Gidding SS, Lima JAC, Ambale-Venkatesh B (2017) Reference ranges and regional patterns of left ventricular strain and strain rate using two-dimensional speckle-tracking echocardiography in a healthy middle-aged black and white population: the CARDIA Study. J Am Soc Echocardiogr 30(7):647–658. https://doi.org/10.1016/j.echo.2017.03.010

    Article  PubMed  PubMed Central  Google Scholar 

  34. Taylor RJ, Moody WE, Umar F, Edwards NC, Taylor TJ, Stegemann B, Townend JN, Hor KN, Steeds RP, Mazur W, Leyva F (2015) Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values. Eur Heart J Cardiovasc Imaging 16(8):871–881. https://doi.org/10.1093/ehjci/jev006

    Article  PubMed  Google Scholar 

  35. Jaspers K, Freling HG, van Wijk K, Romijn EI, Greuter MJ, Willems TP (2013) Improving the reproducibility of MR-derived left ventricular volume and function measurements with a semi-automatic threshold-based segmentation algorithm. Int J Cardiovasc Imaging 29(3):617–623. https://doi.org/10.1007/s10554-012-0130-5

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuncheng Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Ma, Q., Cao, L. et al. Correlation between left ventricular myocardial strain and left ventricular geometry in healthy adults: a cardiovascular magnetic resonance-feature tracking study. Int J Cardiovasc Imaging 35, 2057–2065 (2019). https://doi.org/10.1007/s10554-019-01644-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-019-01644-3

Keywords

Navigation