Skip to main content
Log in

Multilayer longitudinal strain can help predict the development of no-reflow in patients with acute coronary syndrome without ST elevation

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

No-reflow (NR) is one of the major complications of primary percutaneous coronary intervention (PCI) in patients with non-ST-segment elevation myocardial infarction (NSTEMI). We aim to assess the value of multilayer longitudinal strain parameter to predict NR in patients with NSTEMI and preserved ejection fraction. 230 consecutive patients who were admitted to the emergency department and diagnosed with NSTEMI were prospectively included in this study. Echocardiography was performed 1 h before angiography. Specific analysis for endocardial, mid-myocardial and epicardial layers were performed by two-dimensional (2D) speckle tracking echocardiography (STE) for multilayer longitudinal strain. NR was described as flow grade of ≤ TIMI 2 when mechanical occlusions like dissection, intimal tear, arterial spasm and thromboembolism during angiography were excluded. 49 of 168 patients admitted to the study had NR. No significant differences were observed between the groups regarding age and gender. Multilayer longitudinal strain imaging (endocard, midmyocard and epicard) revealed lower strain values particularly in endocardial layer in patients with NR (GLS-endocard: − 14.14 ± 1.39/− 17.41 ± 2.34, p < 0.001; GLS-midmyocard: − 14.81 ± 1.40/17.81 ± 2.22, p < 0.001; GLS-epicard: − 16.14 ± 1.38/18.22 ± 2.00, p < 0.001). GLS-endocard, GLS-midmyocard, GLS-epicard and ST depression were found to be statistically significant independents parameters respectively to predict NR phenomenon (GLS-endocard: OR: 2.193, p < 0.001; GLS-midmyocard: OR: 1.510, p: 0.016; GLS-epicard: OR: 1.372, p: 0.035; ST depression: OR: 3.694, p: 0.014). We revealed that left ventricular strain study with speckle tracking echocardiography predicts NR formation. This noninvasive method may be useful for detecting NR formation in patients with NSTEMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rezkalla SH, Kloner RA (2008) Coronary no-reflow phenomenon: from the experimental laboratory to the cardiac catheterization laboratory. Catheter Cardiovasc Interv. 72:950–957

    Article  Google Scholar 

  2. Beaglehole R, Irwin A, Prentice T (2004) The World Health Report 2004: changing history. World Health Organization, Geneva

    Google Scholar 

  3. Ito H, Tomooka T, Sakai N et al (1992) Lack ofmyocardial perfusion immediately aftersuccessful thrombolysis: a predictor of poor recovery of left ventricularfunction in anterior myocardial infarction. Circulation 85:1699–1705

    Article  CAS  Google Scholar 

  4. Ito H, Maruyama A, Iwakura K et al (1996) Clinical implications of the ‘no reflow’phenomenon: a predictor of complications and left ventricular remodelling inreperfused anterior wall myocardial infarction. Circulation 93:223–228

    Article  CAS  Google Scholar 

  5. Ito H, Iwakura K (1998) Assessing the relation between coronary reflow andmyocardial reflow. Am J Cardiol 81(Suppl. 12A):8G–12G

    Article  CAS  Google Scholar 

  6. Morishima I, Sone T, Mokuno S et al (1995) Clinical significance of no-reflow phenomenon observed on angiography after successful treatment of acute myocardial infarction with percutaneous transluminal coronary angioplasty. Am Heart J 130:239–243

    Article  CAS  Google Scholar 

  7. Morishima I, Sone T, Okumura K et al (2000) Angiographic no-reflow phenomenon as a predictorof adverse longterm outcome in patients treated with percutaneous transluminal coronaryangioplasty for first acute myocardial infarction. J Am Coll Cardiol 36:1202–1209

    Article  CAS  Google Scholar 

  8. Marzilli M, Gliozheni E, Marraccini P, Fedele S (1998) Primary coronary angioplasty in acute myocardial infarction: clinical correlates of the 'no reflow' phenomenon. Int J Cardiol 65(Suppl 1):S23–S28

    Article  Google Scholar 

  9. Dahlslett T, Karlsen S, Grenne B et al (2014) Early assessment of strain echocardiography can accurately exclude significant coronary artery stenosis in suspected non-ST-segment elevation acute coronary syndrome. J Am Soc Echocardiogr 27:512–519

    Article  Google Scholar 

  10. Eek C, Grenne B, Brunvand H et al (2010) Strain echocardiography predicts acute coronary occlusion in patientswith non-ST-segment elevation acute coronary syndrome. Eur J Echocardiogr 11:501–508

    Article  Google Scholar 

  11. Grenne B, Eek C, Sjøli B et al (2010) Acute coronary occlusion in non-ST-elevation acute coronary syndrome: outcome and early identification by strain echocardiography. Heart 96:1550–1556

    Article  Google Scholar 

  12. Liang HY, Cauduro S, Pellikka P, Wang J, Urheim S, Yang EH et al (2006) Usefulness of two-dimensional speckle strain for evaluation of left ventricular diastolic deformation in patients with coronary artery disease. Am J Cardiol 98:1581–1586

    Article  Google Scholar 

  13. Choi JO, Cho SW, Song YB, Cho SJ, Song BG, Lee SC et al (2009) Longitudinal 2D strain at rest predicts the presence of left main and three vessel coronary artery disease in patients without regional wall motion abnormality. Eur J Echocardiogr 10:695–701

    Article  Google Scholar 

  14. Nucifora G, Schuijf JD, Delgado V, Bertini M, Scholte AJ, Ng AC et al (2010) Incremental value of subclinical left ventricular systolic dysfunction for the identification of patients with obstructive coronary artery disease. Am Heart J 159:148–157

    Article  Google Scholar 

  15. Montgomery DE, Puthumana JJ, Fox JM, Ogunyankin KO (2012) Global longitudinal strain aids the detection of non-obstructive coronary artery disease in the resting echocardiogram. Eur Heart J Cardiovasc Imaging 13:579–587

    Article  Google Scholar 

  16. Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M et al (2015) ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European society of cardiology (ESC). Eur Heart J 37(3):267–315

    Article  Google Scholar 

  17. Scanlon PJ, Faxon DP, Audet AM et al (1999) ACC/AHA Guidelines for coronary angiography: executive summary and recommendations: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Coronary Angiography) developed in collaborationwith the society for cardiac angiography and interventions. Circulation 99:2345–2357

    Article  CAS  Google Scholar 

  18. Gibson CM, Cannon CP, Daley WL, Dodge JT Jr, Alexander B Jr, Marble SJ, McCabe CH, Raymond L, Fortin T, Poole WK (1996) TIMI frame count: a quantitative method of assessing coronary artery flow. Braunwald ECirc 93(5):879–888

    CAS  Google Scholar 

  19. Muller O, Trana C, Curr EE (2013) Myocardial no-reflow treatment. Vasc Pharmacol 11(2):278–285

    CAS  Google Scholar 

  20. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16:233–270

    Article  Google Scholar 

  21. de Simone G (1992) Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol 20(5):1251−1260

    Article  Google Scholar 

  22. Assali AR, Sdringola S, Ghani M et al (2000) Intracoronary adenosine administered during percutaneous intervention in acute myocardial infarction and reduction in theincidence of "no reflow" phenomenon. Catheter Cardiovasc Interv 51:27–31

    Article  CAS  Google Scholar 

  23. Vallejo E, Pena-Duque MA, Norono O et al (1998) The no-reflow phenomenon: its incidence andclinical characteristics in a series of cases. Arch Inst Cardiol Mex 68:247–252

    CAS  PubMed  Google Scholar 

  24. Brosh D, Assali AR, Mager A et al (2007) Effect of no-reflow during primary percutaneous coronary intervention for acute myocardial infarction on six-monthmortality. Am J Cardiol 99(4):442–445

    Article  Google Scholar 

  25. Ndrepepa G, Tiroch K, Fusaro M et al (2010) 5-year prognostic value of no-reflow phenomenon after percutaneous coronary intervention in patients with acute myocardial infarction. J Am Coll Cardiol 55(21):2383–2389

    Article  Google Scholar 

  26. Feher A, Chen SY, Bagi Z, Arora V (2014) Prevention and treatment of no-reflow phenomenon by targeting the coronary microcirculation. Rev Cardiovasc Med 15(1):38–51

    PubMed  Google Scholar 

  27. Jaffe R, Charron T, Puley G, Dick A, Strauss BH (2008) Microvascular obstruction and the no-reflow phenomenon after percutaneous coronary intervention. Circulation 117(24):3152–3156

    Article  Google Scholar 

  28. Harrison RW et al (2013) Incidence and outcomes of no-reflow phenomenon during percutaneous coronary intervention among patients with acute myocardial infarction. Am J Cardiol 111(2):178–184. https://doi.org/10.1016/j.amjcard.2012.09.015

    Article  PubMed  Google Scholar 

  29. Bolognese L et al (2004) Impact of microvascular dysfunction on left ventricular remodelling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction. Circulation 109:1121–1126

    Article  Google Scholar 

  30. Yesin M, Çağdaş M, Kalçık M et al (2017) Comparison of syntax score andsyntax score II to predict “no reflow phenomenon” in patients with STsegmentelevation myocardial infarction. Int J Cardiovasc Imaging 17:1200–1205

    Google Scholar 

  31. Wang JW, Zhou ZQ, Chen YD et al (2015) A risk score for no-reflow in patients with ST-segment elevation myocardial infarction after primary percutaneous coronary intervention. Clin Cardiol 38:208–221

    Article  Google Scholar 

  32. Leclercq F, Messner-Pellenc P, Descours Q et al (1999) Combined assessment of reflow and collateral blood flow by myocardial contrast echocardiography after acute reperfused myocardialinfarction. Heart 82:62–67

    Article  CAS  Google Scholar 

  33. Santoro GM, Valenti R, Buonamici P et al (1998) Relation between ST-segment changes and myocardial perfusion evaluated by myocardial contrast echocardiography in patients with acutemyocardial infarction treated by direct angioplasty. Am J Cardiol 82:932–937

    Article  CAS  Google Scholar 

  34. Schofer J, Montz R, Mathey D (1985) Scintigraphic evidence of the no-reflow phenomenon in human beings after coronary thrombolysis. J Am Coll Cardiol 5:593–598

    Article  CAS  Google Scholar 

  35. Iwakura K, Hiroshi I, Shin T et al (1996) Alternation in the coronary blood flow velocity pattern in patients with no reflow and reperfused acute myocardial infarction. Circulation 94:1269–1275

    Article  CAS  Google Scholar 

  36. Geyer H, Caracciolo G, Abe H et al (2010) Assesment of myocardial mechanics using speckle tracking echocardiography: fundaments and clinical applications. J Am Soc Echocardiogr 23:351–369

    Article  Google Scholar 

  37. Horie H, Takahashi M, Minai K (1998) Long-term beneficial effect of late reperfusion for acute anterior myocardial infarction with percutaneous transluminal coronary angioplasty. Circulation 98:2377–2382

    Article  CAS  Google Scholar 

  38. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E et al (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47:789–793

    Article  Google Scholar 

  39. Zhang L, Wu W-C, Ma H, Wang H (2016) Usefulness of layer-specific strain for identifying complex CAD and predicting the severity of coronary lesions in patients with non-ST-segment elevation acute coronary syndrome: compared with syntax score. Int J Cardiol 223:1045–1052

    Article  Google Scholar 

  40. LeWinter MM et al (1975) Regional differences in myocardial performance in the left ventricle of the dog. Circ Res 37:191

    Article  CAS  Google Scholar 

  41. Sabbah HN et al (1981) The relative role of subendocardium and subepicardium in left ventricular mechanics. Am J Physiol 240:H920

    CAS  PubMed  Google Scholar 

  42. Kimura K et al (2011) Reproducibility and diagnostic accuracy of three-layer speckle tracking echocardiography in a swine chronic ischemia model. Echocardiography 28:1148

    Article  Google Scholar 

  43. Ishizu T et al (2010) Experimental validation of left ventricular transmural strain gradient with echocardiographic two-dimensional speckle tracking imaging. Eur J Echocardiogr 11:377

    Article  Google Scholar 

  44. Ono S et al (1995) Effect of coronary artery reperfusion on transmural myocardial remodeling in dogs. Circulation 91:1143

    Article  CAS  Google Scholar 

  45. Wolferth CC, Bellet S, Livezey MM, Murphy F (1945) Negative displacement of the RS-T segment in the electrocardiogram and its relationships to positive displacement: an experimental study. Am Heart J 29:220–244

    Article  Google Scholar 

  46. Bayley RH (1946) The electrocardiographic effects of injury at the endocardial surface of the left ventricle. Am Heart J 31:677–684

    Article  CAS  Google Scholar 

  47. Katus HA, Looser S, Hallermayer K et al (1992) Development and in vitro characterization of a new immunoassay of cardiac troponin T. Clin Chem 38:386–393

    CAS  PubMed  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Ali Barman.

Ethics declarations

Conflict of interest

All authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within three years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work. If there are no conflicts of interest, the COI should read: “The authors report no relationships that could be construed as a conflict of interest”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atıcı, A., Barman, H.A., Erturk, E. et al. Multilayer longitudinal strain can help predict the development of no-reflow in patients with acute coronary syndrome without ST elevation. Int J Cardiovasc Imaging 35, 1811–1821 (2019). https://doi.org/10.1007/s10554-019-01623-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-019-01623-8

Keywords

Navigation