Skip to main content

Advertisement

Log in

Mechanical dispersion as a marker of left ventricular dysfunction and prognosis in stable coronary artery disease

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Assessment of global longitudinal strain (GLS) is superior to ejection fraction (EF) in the evaluation of left ventricular (LV) function in patients with stable coronary artery disease (CAD). However, the role of mechanical dispersion (MD) in this context remains unresolved. We aimed to evaluate the potential role of MD as a marker of LV dysfunction and long-term prognosis in stable CAD. EF, GLS and MD were assessed in 160 patients with stable CAD, 1 year after successful coronary revascularization. Serum levels of high-sensitivity cardiac troponin I (hs-cTnI) and amino-terminal pro B-type natriuretic peptide (NT-proBNP) were quantified as surrogate markers of LV dysfunction. The primary endpoint was defined as all-cause mortality, the secondary endpoint was defined as the composite of all-cause mortality and hospitalization for acute myocardial infarction or heart failure during follow-up. Whereas no associations between EF and the biochemical markers of LV function were found, both GLS and MD correlated positively with increasing levels of hs-cTnI (R = 0.315, P < 0.001 and R = 0.442, P < 0.001, respectively) and NT-proBNP (R = 0.195, P = 0.016 and R = 0.390, P < 0.001, respectively). Median MD was 46 ms (interquartile range [IQR] 37–53) and was successfully quantified in 96% of the patients. During a median follow-up of 8.4 (IQR 8.2–8.8) years, 14 deaths and 29 secondary events occurred. MD was significantly increased in non-survivors, and provided incremental prognostic value when added to EF and GLS. NT-proBNP was superior to the echocardiographic markers in predicting adverse outcomes. MD may be a promising marker of LV dysfunction and adverse prognosis in stable CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gheorghiade M, Sopko G, De Luca L, Velazquez EJ, Parker JD, Binkley PF et al (2006) Navigating the crossroads of coronary artery disease and heart failure. Circulation 114(11):1202–1213. https://doi.org/10.1161/CIRCULATIONAHA.106.623199

    Article  PubMed  Google Scholar 

  2. Task Force M, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34(38):2949–3003. https://doi.org/10.1093/eurheartj/eht296

    Article  Google Scholar 

  3. Curtis JP, Sokol SI, Wang Y, Rathore SS, Ko DT, Jadbabaie F et al (2003) The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J Am Coll Cardiol 42(4):736–742

    Article  PubMed  Google Scholar 

  4. Lewis EF, Solomon SD, Jablonski KA, Rice MM, Clemenza F, Hsia J et al (2009) Predictors of heart failure in patients with stable coronary artery disease: a PEACE study. Circ Heart Fail 2(3):209–216. https://doi.org/10.1161/CIRCHEARTFAILURE.108.820696

    Article  PubMed  PubMed Central  Google Scholar 

  5. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E et al (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47(4):789–793. https://doi.org/10.1016/j.jacc.2005.10.040

    Article  PubMed  Google Scholar 

  6. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28(1):1–39 e14. https://doi.org/10.1016/j.echo.2014.10.003

    Article  PubMed  Google Scholar 

  7. Marques-Alves P, Espirito-Santo N, Baptista R, Teixeira R, Martins R, Goncalves F et al (2018) Two-dimensional speckle-tracking global longitudinal strain in high-sensitivity troponin-negative low-risk patients with unstable angina: a “resting ischemia test”? Int J Cardiovasc Imaging 34(4):561–568. https://doi.org/10.1007/s10554-017-1269-x

    Article  PubMed  Google Scholar 

  8. Kalam K, Otahal P, Marwick TH (2014) Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 100(21):1673–1680. https://doi.org/10.1136/heartjnl-2014-305538

    Article  PubMed  Google Scholar 

  9. Biering-Sorensen T, Hoffmann S, Mogelvang R, Zeeberg Iversen A, Galatius S, Fritz-Hansen T et al (2014) Myocardial strain analysis by 2-dimensional speckle tracking echocardiography improves diagnostics of coronary artery stenosis in stable angina pectoris. Circ Cardiovasc Imaging 7(1):58–65. https://doi.org/10.1161/CIRCIMAGING.113.000989

    Article  PubMed  Google Scholar 

  10. Haugaa KH, Edvardsen T, Leren TP, Gran JM, Smiseth OA, Amlie JP (2009) Left ventricular mechanical dispersion by tissue Doppler imaging: a novel approach for identifying high-risk individuals with long QT syndrome. Eur Heart J 30(3):330–337. https://doi.org/10.1093/eurheartj/ehn466

    Article  PubMed  Google Scholar 

  11. Schnell F, Matelot D, Daudin M, Kervio G, Mabo P, Carre F et al (2017) Mechanical dispersion by strain echocardiography: a novel tool to diagnose hypertrophic cardiomyopathy in athletes. J Am Soc Echocardiogr 30(3):251–261. https://doi.org/10.1016/j.echo.2016.11.013

    Article  PubMed  Google Scholar 

  12. Stankovic I, Putnikovic B, Janicijevic A, Jankovic M, Cvjetan R, Pavlovic S et al (2015) Myocardial mechanical and QTc dispersion for the detection of significant coronary artery disease. Eur Heart J Cardiovasc Imaging 16(9):1015–1022. https://doi.org/10.1093/ehjci/jev029

    Article  PubMed  Google Scholar 

  13. Smedsrud MK, Gravning J, Omland T, Eek C, Morkrid L, Skulstad H et al (2015) Sensitive cardiac troponins and N-terminal pro-B-type natriuretic peptide in stable coronary artery disease: correlation with left ventricular function as assessed by myocardial strain. Int J Cardiovasc Imaging 31(5):967–973. https://doi.org/10.1007/s10554-015-0646-6

    Article  PubMed  Google Scholar 

  14. Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317(17):1098. https://doi.org/10.1056/NEJM198710223171717

    Article  CAS  PubMed  Google Scholar 

  15. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542

    Article  PubMed  Google Scholar 

  16. Haugaa KH, Smedsrud MK, Steen T, Kongsgaard E, Loennechen JP, Skjaerpe T et al (2010) Mechanical dispersion assessed by myocardial strain in patients after myocardial infarction for risk prediction of ventricular arrhythmia. JACC Cardiovasc Imaging 3(3):247–256. https://doi.org/10.1016/j.jcmg.2009.11.012

    Article  PubMed  Google Scholar 

  17. Apple FS, Ler R, Murakami MM (2012) Determination of 19 cardiac troponin I and T assay 99th percentile values from a common presumably healthy population. Clin Chem 58(11):1574–1581. https://doi.org/10.1373/clinchem.2012.192716

    Article  CAS  PubMed  Google Scholar 

  18. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman IIIrd HI et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612

    Article  PubMed  PubMed Central  Google Scholar 

  19. Haland TF, Almaas VM, Hasselberg NE, Saberniak J, Leren IS, Hopp E et al (2016) Strain echocardiography is related to fibrosis and ventricular arrhythmias in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 17(6):613–621. https://doi.org/10.1093/ehjci/jew005

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rodriguez-Zanella H, Haugaa K, Boccalini F, Secco E, Edvardsen T, Badano LP et al (2017) Physiological determinants of left ventricular mechanical dispersion: a 2-dimensional speckle tracking echocardiographic study in healthy volunteers. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2017.06.015

    Article  PubMed  Google Scholar 

  21. Stephan C, Wesseling S, Schink T, Jung K (2003) Comparison of eight computer programs for receiver-operating characteristic analysis. Clin Chem 49(3):433–439

    Article  CAS  PubMed  Google Scholar 

  22. Pencina MJ, D’Agostino RB, Steyerberg EW (2011) Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 30(1):11–21. https://doi.org/10.1002/sim.4085

    Article  PubMed  Google Scholar 

  23. Stokke TM, Hasselberg NE, Smedsrud MK, Sarvari SI, Haugaa KH, Smiseth OA et al (2017) Geometry as a confounder when assessing ventricular systolic function: comparison between ejection fraction and strain. J Am Coll Cardiol 70(8):942–954. https://doi.org/10.1016/j.jacc.2017.06.046

    Article  PubMed  Google Scholar 

  24. Haugaa KH, Edvardsen T (2016) Global longitudinal strain: the best biomarker for predicting prognosis in heart failure? Eur J Heart Fail 18(11):1340–1341. https://doi.org/10.1002/ejhf.632

    Article  PubMed  Google Scholar 

  25. Zoghbi WA, Narula J (2010) Is mechanical dispersion a raven of ventricular arrhythmias? JACC Cardiovasc Imaging 3(3):330–331. https://doi.org/10.1016/j.jcmg.2010.01.003

    Article  PubMed  Google Scholar 

  26. Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S (2016) Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J 37(15):1196–1207. https://doi.org/10.1093/eurheartj/ehv529

    Article  PubMed  Google Scholar 

  27. Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J Med 356(8):830–840. https://doi.org/10.1056/NEJMra061889

    Article  CAS  PubMed  Google Scholar 

  28. Rapsomaniki E, Shah A, Perel P, Denaxas S, George J, Nicholas O et al (2014) Prognostic models for stable coronary artery disease based on electronic health record cohort of 102 023 patients. Eur Heart J 35(13):844–852. https://doi.org/10.1093/eurheartj/eht533

    Article  CAS  PubMed  Google Scholar 

  29. Kragelund C, Gronning B, Kober L, Hildebrandt P, Steffensen R (2005) N-terminal pro-B-type natriuretic peptide and long-term mortality in stable coronary heart disease. N Engl J Med 352(7):666–675. https://doi.org/10.1056/NEJMoa042330

    Article  CAS  PubMed  Google Scholar 

  30. Omland T, de Lemos JA, Holmen OL, Dalen H, Benth JS, Nygard S et al (2015) Impact of sex on the prognostic value of high-sensitivity cardiac troponin I in the general population: the HUNT study. Clin Chem 61(4):646–656. https://doi.org/10.1373/clinchem.2014.234369

    Article  CAS  PubMed  Google Scholar 

  31. Omland T, Richards AM, Wergeland R, Vik-Mo H (2005) B-type natriuretic peptide and long-term survival in patients with stable coronary artery disease. Am J Cardiol 95(1):24–28. https://doi.org/10.1016/j.amjcard.2004.08.058

    Article  CAS  PubMed  Google Scholar 

  32. de Lemos JA, McGuire DK, Khera A, Das SR, Murphy SA, Omland T et al (2009) Screening the population for left ventricular hypertrophy and left ventricular systolic dysfunction using natriuretic peptides: results from the Dallas Heart Study. Am Heart J 157(4):746–753 e742. https://doi.org/10.1016/j.ahj.2008.12.017

    Article  PubMed  Google Scholar 

  33. Sung JM, Su CT, Chang YT, Su YR, Tsai WC, Wang SP et al (2014) Independent value of cardiac troponin T and left ventricular global longitudinal strain in predicting all-cause mortality among stable hemodialysis patients with preserved left ventricular ejection fraction. Biomed Res Int 2014:217290. https://doi.org/10.1155/2014/217290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alashi A, Mentias A, Patel K, Gillinov AM, Sabik JF, Popovic ZB et al (2016) Synergistic utility of brain natriuretic peptide and left ventricular global longitudinal strain in asymptomatic patients with significant primary mitral regurgitation and preserved systolic function undergoing mitral valve surgery. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.115.004451

  35. Almaas VM, Haugaa KH, Strom EH, Scott H, Smith HJ, Dahl CP et al (2014) Noninvasive assessment of myocardial fibrosis in patients with obstructive hypertrophic cardiomyopathy. Heart 100(8):631–638. https://doi.org/10.1136/heartjnl-2013-304923

    Article  PubMed  Google Scholar 

  36. Lindholm D, Lindback J, Armstrong PW, Budaj A, Cannon CP, Granger CB et al (2017) Biomarker-based risk model to predict cardiovascular mortality in patients with stable coronary disease. J Am Coll Cardiol 70(7):813–826. https://doi.org/10.1016/j.jacc.2017.06.030

    Article  PubMed  Google Scholar 

  37. Heart Outcomes Prevention Evaluation Study I, Yusuf S, Sleight P, Pogue J, Bosch J, Davies R et al (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 342 (3):145–153. https://doi.org/10.1056/NEJM200001203420301

    Article  Google Scholar 

Download references

Acknowledgements

The authors highly appreciate the technical assistance of Mrs. Marit Holmefjord Pedersen, Clinical Trail Unit, Division of Medicine, Akershus University Hospital.

Funding

This work was supported by the Research Council of Norway, (RCN Grant Number 203489/030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jørgen Gravning.

Ethics declarations

Conflict of interest

JG has received lecture fees from Abbott Laboratories.

Ethical standards

The Regional Ethics Committee approved the study, and all subjects provided written informed consent.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kvisvik, B., Aagaard, E.N., Mørkrid, L. et al. Mechanical dispersion as a marker of left ventricular dysfunction and prognosis in stable coronary artery disease. Int J Cardiovasc Imaging 35, 1265–1275 (2019). https://doi.org/10.1007/s10554-019-01583-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-019-01583-z

Keywords

Navigation