Skip to main content
Log in

A review in enormity of OCT and its enduring understanding of vulnerable plaque in coronary bifurcation lesion

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Optical coherence tomography (OCT) has emerged as one of the most promising tools to assist the optimization of percutaneous coronary intervention (PCI). Its ability to provide unique information on the plaque at high risk for rupture, plaque composition, the thickness of the fibrous cap, the presence of macrophage and thrombi has not only assisted simple PCI but also in many complex bifurcation lesions PCI. OCT has helped to provide valuable anatomic information to optimize stent implantation and adapt PCI strategy in individual patients. This review article summarizes the current role of OCT as an imaging technology and prediction of vulnerable plaque, its site and composition at the coronary bifurcation lesions for supporting the clinical decision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ruff CT, Braunwald E (2011) The evolving epidemiology of acute coronary syndromes. Nat Rev Cardiol 8:140–147

    Article  Google Scholar 

  2. Japanese Coronary Artery Disease (JCAD) Study Investigators (2006) Current status of the background of patients with coronary artery disease in Japan. Circ J 70:1256–1262

    Article  Google Scholar 

  3. S Uemura (2013) Invasive imaging of vulnerable atherosclerotic plaques in coronary artery disease. Circ J 77:869–875

    Article  CAS  Google Scholar 

  4. Mintz GS, Maehara A (2009) Serial intravascular ultrasound assessment of atherosclerosis progression and regression: state-of-the-art and limitation. Circ J 73:1557–1560

    Article  Google Scholar 

  5. Nicholls SJ, Hsu A, Wolski K et al (2010) Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. J Am Coll Cardiol 55:2399–2407

    Article  Google Scholar 

  6. Stone GW, Maehara A, Lansky AJ et al (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364:226–235

    Article  CAS  Google Scholar 

  7. Kubo T, Akasaka T (2014) Recent advances in intracoronary imaging techniques: focus on optical coherence tomography. Expert Rev Med Devices 5:691–697

    Article  Google Scholar 

  8. Kume T, Akasaka T, Kawamoto T et al (2006) Assessment of coronary arterial thrombus by optical coherence tomography. Am J Cardiol 97:1713–1717

    Article  Google Scholar 

  9. Kubo T, Imanishi T, Takarada S et al (2007) Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol 50:933–939

    Article  Google Scholar 

  10. Tearney GJ, Regar E, Akasaka T et al (2012) Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol 59:1058–1072

    Article  Google Scholar 

  11. Jang IK, Tearney GJ, MacNeill B et al (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111:1551–1555

    Article  Google Scholar 

  12. Kenichi F, Hiroyuki H, Mitsumasa O et al (2013) Intracoronary imaging for detecting vulnerable plaque. Circ J 77:588–595

    Article  Google Scholar 

  13. Jaguszewski M, Klingenberg R, Landmesser U (2013) Intracoronary near-infrared spectroscopy (NIRS) imaging for detection of lipid content of coronary plaques: current experience and future perspectives. Curr Cardiovasc Imaging Rep 5:426–430

    Article  Google Scholar 

  14. Jang IK (2012) Near infrared spectroscopy: another toy or indispensible diagnostic tool? Circ Cardiovasc Interv 5:10–11

    Article  Google Scholar 

  15. Cai JZ, Zhang YJ, Xu T et al (2017) Optical coherence tomography assessment of a complex bifurcation lesion treated with double kissing crush technique: a case report. Medicine 96:1(e5740)

    Google Scholar 

  16. Tanaka A, Imanishi T, Kitabata H et al (2009) Lipid-rich plaque and myocardial perfusion after successful stenting in patients with non-ST-segment elevation acute coronary syndrome: an optical coherence tomography study. Eur Heart J 30:1348–1355

    Article  Google Scholar 

  17. Lee T, Yonetsu T, Koura K et al (2011) Impact of coronary plaque morphology assessed by optical coherence tomography on cardiac troponin elevation in patients with elective stent implantation. Circ Cardiovasc Interv 4:378–386

    Article  CAS  Google Scholar 

  18. Karanasos A, Tu S, van Ditzhuijzen NS et al (2014) A novel method to assess coronary artery bifurcations by OCT: cut-plane analysis for side-branch ostial assessment from a main-vessel pullback. Eur Heart J Cardiovasc Imaging 16:177–189

    Article  Google Scholar 

  19. Alegria-Barrero E, Foin N, Chan PH, Syrseloudis D (2012) Optical coherence tomography for guidance of distal cell recrossing in bifurcation stenting: choosing the right cell matters. EuroIntervention 8:205–213

    Article  Google Scholar 

  20. Hahn JY, Chun WJ, Kim JH et al (2013) Predictors and outcomes of side branch occlusion after main vessel stenting in coronary bifurcation lesions: results from the COBIS II Registry. J Am Coll Cardiol 62:1654–1659

    Article  Google Scholar 

  21. Watanabe M, Uemura S, Sugawara Y, Ueda T et al (2014) Side branch complication after a single-stent crossover technique: prediction with frequency domain optical coherence tomography. Coron Artery Dis 25:321–329

    Article  Google Scholar 

  22. Okamura T, Onuma Y, Yamada J et al (2014) 3D optical coherence tomography: new insights into the process of optimal rewiring of side branches during bifurcational stenting. EuroIntervention 8:907–915

    Article  Google Scholar 

  23. Burzotta F, Talarico GP, Trani C, De Maria GL et al (2014) Frequency- domain optical coherence tomography findings in patients with bifurcated lesions undergoing provisional stenting. Eur Heart J Cardiovasc Imaging 15:547–555

    Article  Google Scholar 

  24. Bezerra HG, Attizzani GF, Sirbu V et al (2013) Optical coherence tomography versus intravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention. JACC Cardiovasc Interv 6:228–236

    Article  Google Scholar 

  25. Foin N, Gutierrez-Chico JL, Nakatani S, Torii R et al (2014) Incomplete stent apposition causes high shear flow disturbances and delay in neointimal coverage as a function of strut to wall detachment distance: implications for the management of incomplete stent apposition. Circ Cardiovasc Interv 7:180–189

    Article  Google Scholar 

  26. Windecker S, Kolh P, Alfonso F, Collet JP et al (2015) ESC/EACTS guidelines on myocardial revascularization. EuroIntervention 10:1024–1094

    Article  Google Scholar 

  27. Holm NR, Adriaenssens T, Motreff P et al (2015) OCT for bifurcation stenting: what have we learned? EuroIntervention 11:64–70

    Article  Google Scholar 

  28. Matsumoto D, Shite J, Shinke T et al (2007) Neo-intimal coverage of sirolimus-eluting stents at 6-month follow-up: evaluated by optical coherence tomography. Eur Heart J 28:961–967

    Article  CAS  Google Scholar 

  29. Kubo T, Imanishi T, Kitabata H et al (2008) Comparison of vascular response after sirolimus-eluting stent implantation between patients with unstable and stable angina pectoris: a serial optical coherence tomography study. JACC Cardiovasc Imaging 1:475–484

    Article  Google Scholar 

  30. Tahara S, Bezerra HG, Sirbu V et al (2010) Angiographic, IVUS and OCT evaluation of the long-term impact of coronary disease severity at the site of overlapping drug-eluting and bare metal stents: a substudy of the ODESSA trial. Heart 96:1574–1578

    Article  Google Scholar 

  31. Takano M, Murakami D, Yamamoto M et al (2013) Six-month follow-up evaluation for everolimus-eluting stents by intracoronary optical coherence tomography: comparison with paclitaxel-eluting stents. Int J Cardiol 166:181–186

    Article  Google Scholar 

  32. Nakazawa G, Yazdani SK, Finn AV, Vorpahl M et al (2010) Pathological findings at bifurcation lesions: the impact of flow distribution on atherosclerosis and arterial healing after stent implantation. J Am Coll Cardiol 55:1679–1687

    Article  Google Scholar 

  33. Liu Y, Imanishi T, Kubo T et al (2011) Assessment by optical coherence tomography of stent struts across side branch: comparison of bare-metal stents and drug-elution stents. Circ J 75:106–112

    Article  Google Scholar 

  34. Guagliumi G, Capodanno D, Ikejima H et al (2012) Impact of different stent alloys on human vascular response to everolimus-eluting stent: an optical coherence to- mography study: The OCTEVEREST. Catheter Cardiovasc Interv 81:510–518

    Article  Google Scholar 

  35. Guagliumi G, Ikejima H, Sirbu V et al (2011) Impact of drug release kinetics on vascular response to different zotarolimus-eluting stents implanted in patients with long coronary stenoses: The Long OCT study (Optical Coherence Tomography in Long Lesions). JACC Cardiovasc Interv 4:778–785

    Article  Google Scholar 

  36. Steigen TK, Maeng M, Wiseth R et al (2006) Randomized study on simple versus complex stenting of coronary artery bifurcation lesions: the nordic bifurcation study. Circulation 114:1955–1961

    Article  Google Scholar 

  37. Bourantas CV, Tweddel AC, Papafaklis MI et al (2009) Comparison of quantitative coronary angiography with intracoronary ultrasound. Can quantitative coronary angiography accurately estimate the severity of a luminal stenosis? Angiology 60:169–179

    Article  Google Scholar 

  38. Berry C, L’Allier PL, Gregoire J et al (2007) Comparison of intravascular ultrasound and quantitative coronary angiography for the assessment of coronary artery disease progression. Circulation 115:1851–1857

    Article  Google Scholar 

  39. Yabushita H, Bouma BE, Houser SL et al (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106:1640–1645

    Article  Google Scholar 

  40. Jia H, Hu S, Uemura S et al (2015) Insights into the spatial distribution of lipid-rich plaques in relation to coronary artery bifurcations: an in-vivo optical coherence tomography study. Coron Artery Dis 26:133–141

    Article  Google Scholar 

  41. Gonzalo N, Garcia-Garcia HM, Regar E et al (2009) In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography. JACC Cardiovasc Imaging 2:473–482

    Article  Google Scholar 

  42. Dato I, Burzotta F, Trani C et al (2016) Angiographically intermediate left main bifurcation disease assessment by frequency domain optical coherence tomography (FD-OCT). Int J Cardiol 220:726–728

    Article  Google Scholar 

  43. Kini AS, Vengrenyuk Y, Pena J, Yishimura T (2016) Plaque morphology predictors of side branch occlusion after provisional stenting in coronary bifurcation lesion: results of optical coherence tomography bifurcation study (ORBID). Catheter Cardiovasc Interv 89:259–268

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoliang Chen.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, R., Shrestha, A., Kan, J. et al. A review in enormity of OCT and its enduring understanding of vulnerable plaque in coronary bifurcation lesion. Int J Cardiovasc Imaging 34, 1679–1684 (2018). https://doi.org/10.1007/s10554-018-1384-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-018-1384-3

Keywords

Navigation