Advertisement

The International Journal of Cardiovascular Imaging

, Volume 34, Issue 9, pp 1439–1449 | Cite as

Right ventricular septomarginal trabeculation hypertrophy is associated with disease severity in patients with pulmonary arterial hypertension

  • Yang Dong
  • Jiayu Sun
  • Dan Yang
  • Juan He
  • Wei Cheng
  • Ke Wan
  • Hong Liu
  • Andreas Greiser
  • Xiaoyue Zhou
  • Yuchi Han
  • Yucheng Chen
Original Paper
  • 103 Downloads

Abstract

To characterize the morphological change in the right ventricle (RV) of patients with pulmonary artery hypertension (PAH) and further explore the correlation between septomarginal trabeculation (SMT) and right ventricular (RV) function, myocardial fibrosis, and exercise capacity in patients with PAH. Sixty untreated PAH patients were prospectively included from May 2016 to April 2017. All patients underwent comprehensive clinical evaluation and cardiac magnetic resonance (CMR). The area and diameter of the basal segment of SMT, and the mass of SMT were measured on cine SSFP images. Relationship between parameters of SMT and RV ejection fraction (RVEF), 6 min walking distance (6MWD), myocardial fibrosis and pulmonary vascular resistance (PVR) were evaluated by Pearson’s correlation and logistic regression. Predictive performance of SMT parameters for reduced RVEF or impaired 6MWD was evaluated by receiver operating characteristics (ROC) analysis. Compared with SMT diameter index and mass index, SMT area index (SMT Ai) in basal segment was the best parameter to show correlation with RVEF (r = − 0.496, P < 0.001), 6MWD (r = − 0.619, P < 0.001), and inferior insertion point (I IP) extracelluar volume (ECV) (r = 0.365, P = 0.008). ROC showed that SMT Ai had the strongest predictive value for reduced RVEF (AUC = 0.756), and impaired 6MWD (AUC = 0.813). SMT parameters were closely correlated with RV systolic function and 6MWD in patients with PAH. SMT Ai is a simple imaging indicator for the severity of PAH.

Keywords

Pulmonary artery hypertension Cardiac magnetic resonance Septomarginal trabeculation Right ventricle Myocardial fibrosis Exercise capacity 

Notes

Acknowledgements

This study was supported by two grants from the National Natural Science Foundation, People’s Republic of China (Nos. 81271531, 81571638).

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Galiè N, Humbert M, Vachiery J-L, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Noordegraaf AV, Beghetti M, Ghofrani A, Sanchez MAG, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M (2015) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 46:1855–1856.  https://doi.org/10.1183/13993003.51032-2015 CrossRefGoogle Scholar
  2. 2.
    Glaser S, Obst A, Koch B, Henkel B, Grieger A, Felix SB, Halank M, Bruch L, Bollmann T, Warnke C, Schaper C, Ewert R (2013) Pulmonary hypertension in patients with idiopathic pulmonary fibrosis—the predictive value of exercise capacity and gas exchange efficiency. PloS ONE 8(6):e65643.  https://doi.org/10.1371/journal.pone.0065643 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Naeije R, Manes A (2014) The right ventricle in pulmonary arterial hypertension. Eur Respir Rev 23(134):476–487.  https://doi.org/10.1183/09059180.00007414 CrossRefPubMedGoogle Scholar
  4. 4.
    Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, Naeije R, Newman J, Oudiz RJ, Provencher S, Torbicki A, Voelkel NF, Hassoun PM (2013) Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol 62(25 Suppl):D22-33.  https://doi.org/10.1016/j.jacc.2013.10.027 PubMedGoogle Scholar
  5. 5.
    Gomez-Arroyo J, Sandoval J, Simon MA, Dominguez-Cano E, Voelkel NF, Bogaard HJ (2014) Treatment for pulmonary arterial hypertension-associated right ventricular dysfunction. Ann Am Thorac Soc 11(7):1101–1115.  https://doi.org/10.1513/AnnalsATS.201312-425FR CrossRefPubMedGoogle Scholar
  6. 6.
    Blyth KG, Groenning BA, Martin TN, Foster JE, Mark PB, Dargie HJ, Peacock AJ (2005) Contrast enhanced-cardiovascular magnetic resonance imaging in patients with pulmonary hypertension. Eur Heart J 26(19):1993–1999.  https://doi.org/10.1093/eurheartj/ehi328 CrossRefPubMedGoogle Scholar
  7. 7.
    Freed BH, Gomberg-Maitland M, Chandra S, Mor-Avi V, Rich S, Archer SL, Jamison EB Jr, Lang RM, Patel AR (2012) Late gadolinium enhancement cardiovascular magnetic resonance predicts clinical worsening in patients with pulmonary hypertension. J Cardiovasc Magn Reson 14:11.  https://doi.org/10.1186/1532-429X-14-11 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    McCann GP, Gan CT, Beek AM, Niessen HWM, Noordegraaf AV, Rossum ACv (2007) Extent of MRI delayed enhancement of myocardial mass is related to right ventricular dysfunction in pulmonary artery hypertension. AJR Am J Roentgenol 188:349–355CrossRefPubMedGoogle Scholar
  9. 9.
    van Oorschot JW, Gho JM, van Hout GP, Froeling M, Jansen Of Lorkeers SJ, Hoefer IE, Doevendans PA, Luijten PR, Chamuleau SA, Zwanenburg JJ (2015) Endogenous contrast MRI of cardiac fibrosis: beyond late gadolinium enhancement. J Magn Reson Imaging 41(5):1181–1189.  https://doi.org/10.1002/jmri.24715 CrossRefPubMedGoogle Scholar
  10. 10.
    aus dem Siepen F, Buss SJ, Messroghli D, Andre F, Lossnitzer D, Seitz S, Keller M, Schnabel PA, Giannitsis E, Korosoglou G, Katus HA, Steen H (2015) T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 16(2):210–216.  https://doi.org/10.1093/ehjci/jeu183 CrossRefPubMedGoogle Scholar
  11. 11.
    Roller FC, Wiedenroth C, Breithecker A, Liebetrau C, Mayer E, Schneider C, Rolf A, Hamm C, Krombach GA (2017) Native T1 mapping and extracellular volume fraction measurement for assessment of right ventricular insertion point and septal fibrosis in chronic thromboembolic pulmonary hypertension. Eur Radiol 27(5):1980–1991.  https://doi.org/10.1007/s00330-016-4585-y CrossRefPubMedGoogle Scholar
  12. 12.
    Reiter U, Reiter G, Kovacs G, Adelsmayr G, Greiser A, Olschewski H, Fuchsjager M (2017) Native myocardial T1 mapping in pulmonary hypertension: correlations with cardiac function and hemodynamics. Eur Radiol 27(1):157–166.  https://doi.org/10.1007/s00330-016-4360-0 CrossRefPubMedGoogle Scholar
  13. 13.
    Chen YY, Yun H, Jin H, Kong H, Long YL, Fu CX, Yang S, Zeng MS (2017) Association of native T1 times with biventricular function and hemodynamics in precapillary pulmonary hypertension. Int J Cardiovasc Imaging 33(8):1179–1189.  https://doi.org/10.1007/s10554-017-1095-1 CrossRefPubMedGoogle Scholar
  14. 14.
    Spruijt OA, Vissers L, Bogaard HJ, Hofman MB, Vonk-Noordegraaf A, Marcus JT (2016) Increased native T1-values at the interventricular insertion regions in precapillary pulmonary hypertension. Int J Cardiovasc Imaging 32(3):451–459.  https://doi.org/10.1007/s10554-015-0787-7 CrossRefPubMedGoogle Scholar
  15. 15.
    Garcia-Alvarez A, Garcia-Lunar I, Pereda D, Fernandez-Jimenez R, Sanchez-Gonzalez J, Mirelis JG, Nuno-Ayala M, Sanchez-Quintana D, Fernandez-Friera L, Garcia-Ruiz JM, Pizarro G, Aguero J, Campelos P, Castella M, Sabate M, Fuster V, Sanz J, Ibanez B (2015) Association of myocardial T1-mapping CMR with hemodynamics and RV performance in pulmonary hypertension. JACC Cardiovasc Imaging 8(1):76–82.  https://doi.org/10.1016/j.jcmg.2014.08.012 CrossRefPubMedGoogle Scholar
  16. 16.
    Kosinski A, Kozlowski D, Nowinski J, Lewicka E, Dabrowska-Kugacka A, Raczak G, Grzybiak M (2010) Morphogenetic aspects of the septomarginal trabecula in the human heart. Arch Med Sci 6(5):733–743.  https://doi.org/10.5114/aoms.2010.17089 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Restivo A, Smith A, Wilkinson JL, Anderson RH (1989) The medial papillary muscle complex and its related septomarginal trabeculation. A normal anatomical study on human hearts. J Anat 163:231–242PubMedPubMedCentralGoogle Scholar
  18. 18.
    Vogel-Claussen J, Shehata ML, Lossnitzer D, Skrok J, Singh S, Boyce D, Lechtzin N, Girgis RE, Mathai SC, Lima JA, Bluemke DA, Hassoun PM (2011) Increased right ventricular Septomarginal trabeculation mass is a novel marker for pulmonary hypertension: comparison with ventricular mass index and right ventricular mass. Invest Radiol 46(9):567–575.  https://doi.org/10.1097/RLI.0b013e31821b7041 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Karakus G, Zencirci E, Degirmencioglu A, Guvenc TS, Unal Aksu H, Yildirim A (2017) Easily measurable, noninvasive, and novel finding for pulmonary hypertension: hypertrophy of the basal segment of septomarginal trabeculation of right ventricle. Echocardiography 34(2):290–295.  https://doi.org/10.1111/echo.13461 CrossRefPubMedGoogle Scholar
  20. 20.
    Karakus G, Kammerlander AA, Aschauer S, Marzluf BA, Zotter-Tufaro C, Bachmann A, Degirmencioglu A, Duca F, Babayev J, Pfaffenberger S, Bonderman D, Mascherbauer J (2015) Pulmonary artery to aorta ratio for the detection of pulmonary hypertension: cardiovascular magnetic resonance and invasive hemodynamics in heart failure with preserved ejection fraction. J Cardiovasc Magn Reson 17:79.  https://doi.org/10.1186/s12968-015-0184-3 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    American Thoracic Society (2002) ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 166(1):111–117.  https://doi.org/10.1164/rccm.166/1/111 CrossRefGoogle Scholar
  22. 22.
    Benza RL, Gomberg-Maitland M, Miller DP, Frost A, Frantz RP, Foreman AJ, Badesch DB, McGoon MD (2012) The REVEAL registry risk score calculator in patients newly diagnosed with pulmonary arterial hypertension. Chest 141(2):354–362.  https://doi.org/10.1378/chest.11-0676 CrossRefPubMedGoogle Scholar
  23. 23.
    Le TT, Tan RS, De Deyn M, Goh EP, Han Y, Leong BR, Cook SA, Chin CW (2016) Cardiovascular magnetic resonance reference ranges for the heart and aorta in Chinese at 3T. J Cardiovasc Magn Reson 18:21.  https://doi.org/10.1186/s12968-016-0236-3 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lee JY, Choi JW, Kim H (2008) Determination of body surface area and formulas to estimate body surface area using the alginate method. J Physiol Anthropol 27(2):71–82.  https://doi.org/10.2214/jpa2.27.71 CrossRefPubMedGoogle Scholar
  25. 25.
    Forfia PR, Fisher MR, Mathai SC, Housten-Harris T, Hemnes AR, Borlaug BA, Chamera E, Corretti MC, Champion HC, Abraham TP, Girgis RE, Hassoun PM (2006) Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med 174(9):1034–1041.  https://doi.org/10.1164/rccm.200604-547OC CrossRefPubMedGoogle Scholar
  26. 26.
    Grapsa J, Gibbs JS, Cabrita IZ, Watson GF, Pavlopoulos H, Dawson D, Gin-Sing W, Howard LS, Nihoyannopoulos P (2012) The association of clinical outcome with right atrial and ventricular remodelling in patients with pulmonary arterial hypertension: study with real-time three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging 13(8):666–672.  https://doi.org/10.1093/ehjci/jes003 CrossRefPubMedGoogle Scholar
  27. 27.
    Ryo K, Goda A, Onishi T, Delgado-Montero A, Tayal B, Champion HC, Simon MA, Mathier MA, Gladwin MT, Gorcsan J (2015) Characterization of right ventricular remodeling in pulmonary hypertension associated with patient outcomes by 3-dimensional wall motion tracking echocardiography. Circ Cardiovasc Imaging 8(6):e003176-e003176.  https://doi.org/10.1161/circimaging.114.003176 CrossRefGoogle Scholar
  28. 28.
    Vitarelli A, Mangieri E, Terzano C, Gaudio C, Salsano F, Rosato E, Capotosto L, D’Orazio S, Azzano A, Truscelli G, Cocco N, Ashurov R (2015) Three-dimensional echocardiography and 2D-3D speckle-tracking imaging in chronic pulmonary hypertension: diagnostic accuracy in detecting hemodynamic signs of right ventricular (RV) failure. J Am Heart Assoc 4(3):e001584.  https://doi.org/10.1161/JAHA.114.001584 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Li JY, Jiang JB, He Y, Luo JC, Zhong GQ (2017) Ventricular tachycardia originating from moderator band: new perspective on catheter ablation. Case Rep Cardiol 2017:3414360.  https://doi.org/10.1155/2017/3414360 PubMedPubMedCentralGoogle Scholar
  30. 30.
    Sadek MM, Benhayon D, Sureddi R, Chik W, Santangeli P, Supple GE, Hutchinson MD, Bala R, Carballeira L, Zado ES, Patel VV, Callans DJ, Marchlinski FE, Garcia FC (2015) Idiopathic ventricular arrhythmias originating from the moderator band: electrocardiographic characteristics and treatment by catheter ablation. Heart Rhythm 12(1):67–75.  https://doi.org/10.1016/j.hrthm.2014.08.029 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cardiology Division, West China HospitalSichuan UniversityChengduChina
  2. 2.Radiology Department, West China HospitalSichuan UniversityChengduChina
  3. 3.Department of Medicine (Cardiovascular Division)University of PennsylvaniaPhiladelphiaUSA
  4. 4.Siemens Healthcare GmbHErlangenGermany
  5. 5.Northeast Asia MR Collaboration, Siemens HealthcareBeijingChina

Personalised recommendations