Advertisement

Influence of tube potential on quantitative coronary plaque analyses by low radiation dose computed tomography: a phantom study

  • Chunhong Wang
  • Yuliang Liao
  • Haibin Chen
  • Xin Zhen
  • Jianhong Li
  • Yikai Xu
  • Linghong Zhou
Original Paper

Abstract

Previous studies have shown that employing the low dose computed tomography (CT) technique based on low tube potential reduces the radiation dose required for the coronary artery examination protocol. However, low tube potential may adversely influence the CT number of plaque composition. Therefore, we aimed to determine whether quantitative atherosclerotic plaque analysis by a multi-slice, low radiation dose CT protocol using 80 kilovolts (kV) yields results comparable to those of the standard 120 kV protocol. Artificial plaque samples (n = 17) composed of three kinds of plaque were scanned at 120 and 80 kV. Relative low-density and medium-density plaque component volumes obtained by three protocols (80 kV, 60 Hounsfield units [HU] threshold; 120 kV, 60 HU threshold; and 80 kV, 82 HU threshold) were compared. Using the 60 HU threshold, relative volume of the low-density plaque component obtained at 80 kV was lower than that obtained at 120 kV (27 ± 3% vs. 51 ± 5%, P < 0.001), whereas relative volume of the medium-density plaque component obtained at 80 kV was higher than that obtained at 120 kV (73 ± 3% vs. 48 ± 5%, P < 0.001). By contrast, no significant difference in relative volume obtained at 80 kV (82 HU threshold) versus 120 kV (60 HU threshold) was observed for either low-density (52 ± 5% vs. 51 ± 5%) or medium-density (48 ± 5% vs. 48 ± 5%) plaque component. Low tube potential may affect the accuracy of quantitative atherosclerotic plaque analysis. For our phantom test, 82 HU was the optimal threshold for scanning at 80 kV.

Keywords

Atherosclerotic plaque Computed tomography Phantom Radiation dose Tube potential Coronary artery disease Cardiac computed tomography angiography 

Abbreviations

CT

Computed tomography

kV

Kilovolts

mA

Milliampere

HU

Hounsfield units

ACS

Acute coronary syndrome

IVUS

Intravascular ultrasound

CCTA

Coronary computed tomography angiography

PVC

Polyvinyl chloride

IMR

Iterative model reconstruction

WW

Window width

WL

Window level

MPR

Multiplanar reformat

VRT

Volume-rendering technique

CACS

Coronary artery calcium score

Notes

Acknowledgements

The authors are grateful to Fang Zhou, MD for his expertise and assistance with the statistical analysis. The authors also thank Medjaden Bioscience Ltd for language services.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Schroeder S, Kopp AF, Baumbach A, Meisner C, Kuettner A, Georg C, Ohnesorge B, Herdeg C, Claussen CD, Karsch KR (2001) Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 37(5):1430–1435CrossRefPubMedGoogle Scholar
  2. 2.
    Sun J, Zhang Z, Lu B, Yu W, Yang Y, Zhou Y, Wang Y, Fan Z (2008) Identification and quantification of coronary atherosclerotic plaques: a comparison of 64-MDCT and intravascular ultrasound. AJR Am J Roentgenol 190(3):748–754.  https://doi.org/10.2214/AJR.07.2763 CrossRefPubMedGoogle Scholar
  3. 3.
    Benedek T, Jako B, Benedek I (2014) Plaque quantification by coronary CT and intravascular ultrasound identifies a low CT density core as a marker of plaque instability in acute coronary syndromes. Int Heart J 55(1):22–28CrossRefPubMedGoogle Scholar
  4. 4.
    Mintz GS, Garcia-Garcia HM, Nicholls SJ, Weissman NJ, Bruining N, Crowe T, Tardif JC, Serruys PW (2011) Clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound regression/progression studies. EuroIntervention 6(9):1123–1130.  https://doi.org/10.4244/EIJV6I9A195 CrossRefPubMedGoogle Scholar
  5. 5.
    Boogers MJ, Broersen A, van Velzen JE, de Graaf FR, El-Naggar HM, Kitslaar PH, Dijkstra J, Delgado V, Boersma E, de Roos A, Schuijf JD, Schalij MJ, Reiber JH, Bax JJ, Jukema JW (2012) Automated quantification of coronary plaque with computed tomography: comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification. Eur Heart J 33(8):1007–1016.  https://doi.org/10.1093/eurheartj/ehr465 CrossRefPubMedGoogle Scholar
  6. 6.
    de Graaf MA, Broersen A, Kitslaar PH, Roos CJ, Dijkstra J, Lelieveldt BP, Jukema JW, Schalij MJ, Delgado V, Bax JJ, Reiber JH, Scholte AJ (2013) Automatic quantification and characterization of coronary atherosclerosis with computed tomography coronary angiography: cross-correlation with intravascular ultrasound virtual histology. Int J Cardiovasc Imaging 29(5):1177–1190.  https://doi.org/10.1007/s10554-013-0194-x CrossRefPubMedGoogle Scholar
  7. 7.
    van Velzen JE, de Graaf FR, Jukema JW, de Grooth GJ, Pundziute G, Kroft LJ, de Roos A, Reiber JH, Bax JJ, Schalij MJ, Schuijf JD, van der Wall EE (2011) Comparison of the relation between the calcium score and plaque characteristics in patients with acute coronary syndrome versus patients with stable coronary artery disease, assessed by computed tomography angiography and virtual histology intravascular ultrasound. Am J Cardiol 108(5):658–664.  https://doi.org/10.1016/j.amjcard.2011.04.009 CrossRefPubMedGoogle Scholar
  8. 8.
    Kim YJ, Jin GY, Kim EY, Han YM, Chae JK, Lee SR, Kwon KS (2013) Quantification of coronary artery plaque using 64-slice dual-source CT: comparison of semi-automatic and automatic computer-aided analysis based on intravascular ultrasonography as the gold standard. Int J Cardiovasc Imaging 29(2):93–100.  https://doi.org/10.1007/s10554-013-0333-4 CrossRefPubMedGoogle Scholar
  9. 9.
    Papadopoulou SL, Garcia-Garcia HM, Rossi A, Girasis C, Dharampal AS, Kitslaar PH, Krestin GP, de Feyter PJ (2013) Reproducibility of computed tomography angiography data analysis using semiautomated plaque quantification software: implications for the design of longitudinal studies. Int J Cardiovasc Imaging 29(5):1095–1104.  https://doi.org/10.1007/s10554-012-0167-5 CrossRefPubMedGoogle Scholar
  10. 10.
    Ovrehus KA, Schuhbaeck A, Marwan M, Achenbach S, Norgaard BL, Botker HE, Dey D (2016) Reproducibility of semi-automatic coronary plaque quantification in coronary CT angiography with sub-mSv radiation dose. J Cardiovasc Comput Tomogr 10(2):114–120.  https://doi.org/10.1016/j.jcct.2015.11.003 CrossRefPubMedGoogle Scholar
  11. 11.
    Zeb I, Li D, Nasir K, Malpeso J, Batool A, Flores F, Dailing C, Karlsberg RP, Budoff M (2013) Effect of statin treatment on coronary plaque progression—a serial coronary CT angiography study. Atherosclerosis 231(2):198–204.  https://doi.org/10.1016/j.atherosclerosis.2013.08.019 CrossRefPubMedGoogle Scholar
  12. 12.
    Shimojima M, Kawashiri MA, Nitta Y, Yoshida T, Katsuda S, Kaku B, Taguchi T, Hasegawa A, Konno T, Hayashi K, Yamagishi M (2012) Rapid changes in plaque composition and morphology after intensive lipid lowering therapy: study with serial coronary CT angiography. Am J Cardiovasc Dis 2(2):84–88PubMedPubMedCentralGoogle Scholar
  13. 13.
    Yang X, Gai LY, Li P, Chen YD, Li T, Yang L (2010) Diagnostic accuracy of dual-source CT angiography and coronary risk stratification. Vasc Health Risk Manag 6:935–941.  https://doi.org/10.2147/VHRM.S13879 PubMedPubMedCentralGoogle Scholar
  14. 14.
    Kato M, Dote K, Sasaki S, Kagawa E, Nakano Y, Watanabe Y, Higashi A, Itakura K, Ochiumi Y, Takiguchi Y (2013) Presentations of acute coronary syndrome related to coronary lesion morphologies as assessed by intravascular ultrasound and optical coherence tomography. Int J Cardiol 165(3):506–511.  https://doi.org/10.1016/j.ijcard.2011.09.032 CrossRefPubMedGoogle Scholar
  15. 15.
    Kroner ES, van Velzen JE, Boogers MJ, Siebelink HM, Schalij MJ, Kroft LJ, de Roos A, van der Wall EE, Jukema JW, Reiber JH, Schuijf JD, Bax JJ (2011) Positive remodeling on coronary computed tomography as a marker for plaque vulnerability on virtual histology intravascular ultrasound. Am J Cardiol 107(12):1725–1729.  https://doi.org/10.1016/j.amjcard.2011.02.337 CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang LJ, Wang Y, Schoepf UJ, Meinel FG, Bayer RR, Qi L, Cao J, Zhou CS, Zhao YE, Li X, Gong JB, Jin Z, Lu GM (2016) Image quality, radiation dose, and diagnostic accuracy of prospectively ECG-triggered high-pitch coronary CT angiography at 70 kVp in a clinical setting: comparison with invasive coronary angiography. Eur Radiol 26(3):797–806.  https://doi.org/10.1007/s00330-015-3868-z CrossRefPubMedGoogle Scholar
  17. 17.
    Sun Z, Ng KH (2012) Diagnostic value of coronary CT angiography with prospective ECG-gating in the diagnosis of coronary artery disease: a systematic review and meta-analysis. Int J Cardiovasc Imaging 28(8):2109–2119.  https://doi.org/10.1007/s10554-011-0006-0 CrossRefPubMedGoogle Scholar
  18. 18.
    van der Giessen AG, Toepker MH, Donelly PM, Bamberg F, Schlett CL, Raffle C, Irlbeck T, Lee H, van Walsum T, Maurovich-Horvat P, Gijsen FJ, Wentzel JJ, Hoffmann U (2010) Reproducibility, accuracy, and predictors of accuracy for the detection of coronary atherosclerotic plaque composition by computed tomography: an ex vivo comparison to intravascular ultrasound. Invest Radiol 45(11):693–701.  https://doi.org/10.1097/RLI.0b013e3181e0a541 CrossRefPubMedGoogle Scholar
  19. 19.
    Meyer M, Haubenreisser H, Schoepf UJ, Vliegenthart R, Leidecker C, Allmendinger T, Lehmann R, Sudarski S, Borggrefe M, Schoenberg SO, Henzler T (2014) Closing in on the K edge: coronary CT angiography at 100, 80, and 70 kV-initial comparison of a second- versus a third-generation dual-source CT system. Radiology 273(2):373–382.  https://doi.org/10.1148/radiol.14140244 CrossRefPubMedGoogle Scholar
  20. 20.
    Takx RA, Willemink MJ, Nathoe HM, Schilham AM, Budde RP, de Jong PA, Leiner T (2014) The effect of iterative reconstruction on quantitative computed tomography assessment of coronary plaque composition. Int J Cardiovasc Imaging 30(1):155–163.  https://doi.org/10.1007/s10554-013-0293-8 CrossRefPubMedGoogle Scholar
  21. 21.
    Park CH, Lee J, Oh C, Han KH, Kim TH (2015) The feasibility of sub-millisievert coronary CT angiography with low tube voltage, prospective ECG gating, and a knowledge-based iterative model reconstruction algorithm. Int J Cardiovasc Imaging 31(2):197–203.  https://doi.org/10.1007/s10554-015-0795-7 CrossRefPubMedGoogle Scholar
  22. 22.
    Yin WH, Lu B, Gao JB, Li PL, Sun K, Wu ZF, Yang WJ, Zhang XQ, Zheng MW, McQuiston AD, Meinel FG, Schoepf UJ (2015) Effect of reduced X-ray tube voltage, low iodine concentration contrast medium, and sinogram-affirmed iterative reconstruction on image quality and radiation dose at coronary CT angiography: results of the prospective multicenter REALISE trial. J Cardiovasc Comput Tomogr 9(3):215–224.  https://doi.org/10.1016/j.jcct.2015.01.010 CrossRefPubMedGoogle Scholar
  23. 23.
    Yuki H, Utsunomiya D, Funama Y, Tokuyasu S, Namimoto T, Hirai T, Itatani R, Katahira K, Oshima S, Yamashita Y (2014) Value of knowledge-based iterative model reconstruction in low-kV 256-slice coronary CT angiography. J Cardiovasc Comput Tomogr 8(2):115–123.  https://doi.org/10.1016/j.jcct.2013.12.010 CrossRefPubMedGoogle Scholar
  24. 24.
    Paul JF (2011) Individually adapted coronary 64-slice CT angiography based on precontrast attenuation values, using different kVp and tube current settings: evaluation of image quality. Int J Cardiovasc Imaging 27(1):53–59.  https://doi.org/10.1007/s10554-011-9960-9 CrossRefPubMedGoogle Scholar
  25. 25.
    Sun G, Hou YB, Zhang B, Yu L, Li SX, Tan LL, Chen DJ (2015) Application of low tube voltage coronary CT angiography with low-dose iodine contrast agent in patients with a BMI of 26–30 kg/m2. Clin Radiol 70(2):138–145.  https://doi.org/10.1016/j.crad.2014.10.002 CrossRefPubMedGoogle Scholar
  26. 26.
    Liao Y, Wang L, Xu X, Chen H, Chen J, Zhang G, Lei H, Wang R, Zhang S, Gu X, Zhen X, Zhou L (2017) An anthropomorphic abdominal phantom for deformable image registration accuracy validation in adaptive radiation therapy. Med Phys 44(6):2369–2378.  https://doi.org/10.1002/mp.12229 CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang LJ, Qi L, De Cecco CN, Zhou CS, Spearman JV, Schoepf UJ, Lu GM (2014) High-pitch coronary CT angiography at 70 kVp with low contrast medium volume: comparison of 80 and 100 kVp high-pitch protocols. Medicine (Baltimore) 93(22):e92.  https://doi.org/10.1097/MD.0000000000000092 CrossRefGoogle Scholar
  28. 28.
    Oda S, Utsunomiya D, Yuki H, Kai N, Hatemura M, Funama Y, Kidoh M, Yoshida M, Namimoto T, Yamashita Y (2015) Low contrast and radiation dose coronary CT angiography using a 320-row system and a refined contrast injection and timing method. J Cardiovasc Comput Tomogr 9(1):19–27.  https://doi.org/10.1016/j.jcct.2014.12.002 CrossRefPubMedGoogle Scholar
  29. 29.
    Nakazato R, Dey D, Gutstein A, Le Meunier L, Cheng VY, Pimentel R, Paz W, Hayes SW, Thomson LE, Friedman JD, Berman DS (2009) Coronary artery calcium scoring using a reduced tube voltage and radiation dose protocol with dual-source computed tomography. J Cardiovasc Comput Tomogr 3(6):394–400.  https://doi.org/10.1016/j.jcct.2009.10.002 CrossRefPubMedGoogle Scholar
  30. 30.
    Kok M, Mihl C, Hendriks BM, Altintas S, Kietselaer BL, Wildberger JE, Das M (2016) Optimizing contrast media application in coronary CT angiography at lower tube voltage: evaluation in a circulation phantom and sixty patients. Eur J Radiol 85(6):1068–1074.  https://doi.org/10.1016/j.ejrad.2016.03.022 CrossRefPubMedGoogle Scholar
  31. 31.
    Benedek T, Gyongyosi M, Benedek I (2013) Multislice computed tomographic coronary angiography for quantitative assessment of culprit lesions in acute coronary syndromes. Can J Cardiol 29(3):364–371.  https://doi.org/10.1016/j.cjca.2012.11.004 CrossRefPubMedGoogle Scholar
  32. 32.
    Dey D, Achenbach S, Schuhbaeck A, Pflederer T, Nakazato R, Slomka PJ, Berman DS, Marwan M (2014) Comparison of quantitative atherosclerotic plaque burden from coronary CT angiography in patients with first acute coronary syndrome and stable coronary artery disease. J Cardiovasc Comput Tomogr 8(5):368–374.  https://doi.org/10.1016/j.jcct.2014.07.007 CrossRefPubMedGoogle Scholar
  33. 33.
    Ferencik M, Mayrhofer T, Puchner SB, Lu MT, Maurovich-Horvat P, Liu T, Ghemigian K, Kitslaar P, Broersen A, Bamberg F, Truong QA, Schlett CL, Hoffmann U (2015) Computed tomography-based high-risk coronary plaque score to predict acute coronary syndrome among patients with acute chest pain—results from the ROMICAT II trial. J Cardiovasc Comput Tomogr 9(6):538–545.  https://doi.org/10.1016/j.jcct.2015.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kim SY, Kim KS, Seung MJ, Chung JW, Kim JH, Mun SH, Lee YS, Lee JB, Ryu JK, Choi JY, Chang SG (2010) The culprit lesion score on multi-detector computed tomography can detect vulnerable coronary artery plaque. Int J Cardiovasc Imaging 26(Suppl 2):245–252.  https://doi.org/10.1007/s10554-010-9712-2 CrossRefPubMedGoogle Scholar
  35. 35.
    Heo R, Park HB, Lee BK, Shin S, Arsanjani R, Min JK, Chang HJ (2016) Optimal boundary detection method and window settings for coronary atherosclerotic plaque volume analysis in coronary computed tomography angiography: comparison with intravascular ultrasound. Eur Radiol 26(9):3190–3198.  https://doi.org/10.1007/s00330-015-4121-5 CrossRefPubMedGoogle Scholar
  36. 36.
    Marwan M, Pflederer T, Schepis T, Seltmann M, Ropers D, Daniel WG, Achenbach S (2011) Coronary vessel and luminal area measurement using dual-source computed tomography in comparison with intravascular ultrasound: effect of window settings on measurement accuracy. J Comput Assist Tomogr 35(1):113–118.  https://doi.org/10.1097/RCT.0b013e3181f7cb30 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of RadiologyXinyang Central HospitalXinyangChina
  2. 2.Department of Biomedical EngineeringSouthern Medical UniversityGuangzhouChina
  3. 3.Department of Medical Imaging Center, Nanfang HospitalSouthern Medical UniversityGuangzhouChina

Personalised recommendations