Skip to main content
Log in

Non-compact myocardium assessment by cardiac magnetic resonance: dependence on image analysis method

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To compare image analysis methods for the assessment of left ventricle non-compaction from cardiac magnetic resonance (CMR) imaging. CMR images were analyzed in 20 patients and 10 normal subjects. A reference model of the MR signal was introduced and validated based on image data. Non-compact (NC) myocardium size and distribution were assessed by tracing a single, continuous contour delimiting trabeculated region (Jacquier) or by one-by-one selection of trabeculae (Grothoff). The global non-compact/compact (NC/C) ratio, the NC mass, and the segmental NC/C ratio were assessed. Results were compared with the reference model. A significant difference between Grothoff and Jacquier approaches in the estimation of NC/C ratio (32.08 ± 6.63 vs. 19.81 ± 5.72, p < 0.0001) and NC mass (26.59 ± 8.36 vs. 14.15 ± 5.73 g/m2, p < 0.0001) was found. The Grothoff approach better matches the expected signal distribution. Inter-observer reproducibility of both Grothoff and Jacquier methods was adequate (9.71 and 8.22%, respectively) with no significant difference between observers. Jacquier and Grothoff approaches are not interchangeable so that specific diagnostic thresholds should be used for different image analysis methods. Grothoff method seems to better capture the true extension of trabeculated tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rooms I, Dujardin K, De Sutter J (2015) Non-compaction cardiomyopathy: a genetically and clinically heterogeneous disorder. Acta Cardiol 70:625–631

    Article  PubMed  Google Scholar 

  2. Arbustini E, Weidemann F, Hall JL (2014) Left ventricular noncompaction: a distinct cardiomyopathy or a trait shared by different cardiac diseases? J Am Coll Cardiol 64:1840–1850

    Article  PubMed  Google Scholar 

  3. Weir-McCall JR, Yeap PM, Papagiorcopulo C, Fitzgerald K, Gandy SJ, Lambert M, Belch JJF, Cavin I, Littleford R, Macfarlane JA, Matthew SZ, Nicholas RS, Struthers AD, Sullivan F, Waugh SA, White RD, Houston JG (2016) Left ventricular noncompaction. J Am Coll Cardiol 68:2157–2165

    Article  PubMed  PubMed Central  Google Scholar 

  4. Petersen SE (2015) Left ventricular noncompaction: a clinically useful diagnostic label? JACC Cardiovasc Imaging 8:947–948

    Article  PubMed  Google Scholar 

  5. Zemrak F, Ahlman MA, Captur G, Mohiddin SA, Kawel-Boehm N, Prince MR, Moon JC, Hundley WG, Lima JAC, Bluemke DA, Petersen SE (2014) The relationship of left ventricular trabeculation to ventricular function and structure over a 9.5-year follow-up: the MESA study. J Am Coll Cardiol 64:1971–1980

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brescia ST, Rossano JW, Pignatelli R, Jefferies JL, Price JF, Decker JA, Denfield SW, Dreyer WJ, Smith O, Towbin JA, Kim JJ (2013) Mortality and sudden death in pediatric left ventricular noncompaction in a tertiary referral center. Circulation 127:2202–2208

    Article  PubMed  Google Scholar 

  7. Ivanov A, Dabiesingh DS, Bhumireddy GP, Mohamed A, Asfour A, Briggs WM, Ho J, Khan SA, Grossman A, Klem I, Sacchi TJ, Heitner JF (2017) Prevalence and prognostic significance of left ventricular noncompaction in patients referred for cardiac magnetic resonance imaging. Circ Cardiovasc Imaging 10:e006174

    Article  PubMed  Google Scholar 

  8. Jenni R, Oechslin E, Schneider J, Jost CA, Kaufmann PA (2001) Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart 86:666–671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kohli SK, Pantazis AA, Shah JS, Adeyemi B, Jackson G, McKenna WJ, Sharma S, Elliott PM (2008) Diagnosis of left-ventricular non-compaction in patients with left-ventricular systolic dysfunction: time for a reappraisal of diagnostic criteria? Eur Heart J 29:89–95

    Article  PubMed  Google Scholar 

  10. Niemann M, Störk S, Weidemann F (2012) Left ventricular noncompaction cardiomyopathy: an overdiagnosed disease. Circulation 126:e240-243

    Article  Google Scholar 

  11. Thuny F, Jacquier A, Jop B, Giorgi R, Gaubert J-Y, Bartoli J-M, Moulin G, Habib G (2010) Assessment of left ventricular non-compaction in adults: side-by-side comparison of cardiac magnetic resonance imaging with echocardiography. Arch Cardiovasc Dis 103:150–159

    Article  PubMed  Google Scholar 

  12. Petersen SE, Selvanayagam JB, Wiesmann F, Robson MD, Francis JM, Anderson RH, Watkins H, Neubauer S (2005) Left Ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol 46:101–105

    Article  PubMed  Google Scholar 

  13. Jacquier A, Thuny F, Jop B, Giorgi R, Cohen F, Gaubert J-Y, Vidal V, Bartoli JM, Habib G, Moulin G (2010) Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur Heart J 31:1098–1104

    Article  PubMed  Google Scholar 

  14. Grothoff M, Pachowsky M, Hoffmann J, Posch M, Klaassen S, Lehmkuhl L, Gutberlet M (2012) Value of cardiovascular MR in diagnosing left ventricular non-compaction cardiomyopathy and in discriminating between other cardiomyopathies. Eur Radiol 22:2699–2709

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bricq S, Frandon J, Bernard M, Guye M, Finas M, Marcadet L, Miquerol L, Kober F, Habib G, Fagret D, Jacquier A, Lalande A (2016) Semiautomatic detection of myocardial contours in order to investigate normal values of the left ventricular trabeculated mass using MRI. J Magn Reson Imaging 43:1398–1406

    Article  PubMed  Google Scholar 

  16. Chuang ML, Gona P, Hautvast GLTF., Salton CJ, Blease SJ, Yeon SB, Breeuwer M, O’Donnell CJ, Manning WJ (2012) Correlation of trabeculae and papillary muscles with clinical and cardiac characteristics and impact on CMR measures of LV anatomy and function. JACC Cardiovasc Imaging 5:1115–1123

    Article  PubMed  PubMed Central  Google Scholar 

  17. Captur G, Muthurangu V, Cook C, Flett AS, Wilson R, Barison A, Sado DM, Anderson S, McKenna WJ, Mohun TJ, Elliott PM, Moon JC (2013) Quantification of left ventricular trabeculae using fractal analysis. J Cardiovasc Magn Reson 15:36

    Article  PubMed  PubMed Central  Google Scholar 

  18. Andreini D, Pontone G, Bogaert J, Roghi A, Barison A, Schwitter J, Mushtaq S, Vovas G, Sormani P, Aquaro GD, Monney P, Segurini C, Guglielmo M, Conte E, Fusini L, Dello Russo A, Lombardi M, Gripari P, Baggiano A, Fiorentini C, Lombardi F, Bartorelli AL, Pepi M, Masci PG (2016) Long-term prognostic value of cardiac magnetic resonance in left ventricle noncompaction: a prospective multicenter study. J Am Coll Cardiol 68:2166–2181

    Article  PubMed  Google Scholar 

  19. Zuccarino F, Vollmer I, Sanchez G, Navallas M, Pugliese F, Gayete A (2015) Left ventricular noncompaction: imaging findings and diagnostic criteria. AJR Am J Roentgenol 204:W519-530

    Article  Google Scholar 

  20. Chiodi E, Nardozza M, Gamberini MR, Pepe A, Lombardi M, Benea G, Mele D (2017) Left ventricle remodeling in patients with β-thalassemia major. An emerging differential diagnosis with left ventricle noncompaction disease. Clin Imaging 45:58–64

    Article  PubMed  Google Scholar 

  21. Goo S, Joshi P, Sands G, Gerneke D, Taberner A, Dollie Q, LeGrice I, Loiselle D (2009) Trabeculae carneae as models of the ventricular walls: implications for the delivery of oxygen. J Gen Physiol 134:339–350

    Article  PubMed  PubMed Central  Google Scholar 

  22. Macovski A (1996) Noise in MRI. Magn Reson Med 36:494–497

    Article  PubMed  CAS  Google Scholar 

  23. Santago P, Gage HD (1995) Statistical models of partial volume effect. IEEE Trans Image Process Publ IEEE Signal Process Soc 4:1531–1540

    Article  CAS  Google Scholar 

  24. Kosiński A, Kozłowski D, Nowiński J, Lewicka E, Dąbrowska-Kugacka A, Raczak G, Grzybiak M (2010) Morphogenetic aspects of the septomarginal trabecula in the human heart. Arch Med Sci AMS 6:733–743

    Article  PubMed  Google Scholar 

  25. Aquaro GD, Camastra G, Monti L, Lombardi M, Pepe A, Castelletti S, Maestrini V, Todiere G, Masci P, di Giovine G, Barison A, Dellegrottaglie S, Perazzolo Marra M, Pontone G, Di Bella G, working group “Applicazioni della Risonanza Magnetica” of the Italian Society of Cardiology (2017) Reference values of cardiac volumes, dimensions, and new functional parameters by MR: a multicenter, multivendor study. J Magn Reson Imaging 45:1055–1067

    Article  PubMed  Google Scholar 

  26. Positano V, Pingitore A, Giorgetti A, Favilli B, Santarelli MF, Landini L, Marzullo P, Lombardi M (2005) A fast and effective method to assess myocardial necrosis by means of contrast magnetic resonance imaging. J Cardiovasc Magn Reson 7:487–494

    Article  PubMed  Google Scholar 

  27. Positano V, Pepe A, Santarelli MF, Scattini B, De Marchi D, Ramazzotti A, Forni G, Borgna-Pignatti C, Lai ME, Midiri M, Maggio A, Lombardi M, Landini L (2007) Standardized T2* map of normal human heart in vivo to correct T2* segmental artefacts. NMR Biomed 20:578–590

    Article  PubMed  Google Scholar 

  28. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, Kim RJ, von Knobelsdorff-Brenkenhoff F, Kramer CM, Pennell DJ, Plein S, Nagel E (2013) Standardized image interpretation and post processing in cardiovascular magnetic resonance. J Cardiovasc Magn Reson 15:35

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  30. Maceira AM, Prasad SK, Khan M, Pennell DJ (2006) Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8:417–426

    Article  PubMed  CAS  Google Scholar 

  31. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431

    Article  Google Scholar 

  32. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  33. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E, Society for Cardiovascular Magnetic Resonance Board of Trustees Task Force on Standardized Protocols (2013) Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 15:91

    Google Scholar 

  34. Marsella M, Borgna-Pignatti C, Meloni A, Caldarelli V, Dell’Amico MC, Spasiano A, Pitrolo L, Cracolici E, Valeri G, Positano V, Lombardi M, Pepe A (2011) Cardiac iron and cardiac disease in males and females with transfusion-dependent thalassemia major: a T2* magnetic resonance imaging study. Haematologica 96:515–520

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huttin O, Petit M-A, Bozec E, Eschalier R, Juillière Y, Moulin F, Lemoine S, Selton-Suty C, Sadoul N, Mandry D, Beaumont M, Felblinger J, Girerd N, Marie P-Y (2015) Assessment of left ventricular ejection fraction calculation on long-axis views from cardiac magnetic resonance imaging in patients with acute myocardial infarction. Medicine (Baltimore) 94:e1856

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Positano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Positano, V., Meloni, A., Macaione, F. et al. Non-compact myocardium assessment by cardiac magnetic resonance: dependence on image analysis method. Int J Cardiovasc Imaging 34, 1227–1238 (2018). https://doi.org/10.1007/s10554-018-1331-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-018-1331-3

Keywords

Navigation