Focused cardiac ultrasound as a predictor of readmission in acute decompensated heart failure

  • Luke J. Laffin
  • Amit V. Patel
  • Narayan Saha
  • Julian Barbat
  • James K. Hall
  • Matthew Cain
  • Kishan Parikh
  • Jay Shah
  • Kirk T. Spencer
Original Paper

Abstract

Acute decompensated heart failure (ADHF) is a common reason for admission to the hospital, and readmission is frequent. Multiple factors contribute to rehospitalizations, but inadequate assessment of volume status leading to persistent congestion is an important factor. We sought to determine if focused cardiac ultrasound (FCU) of the inferior vena cava (IVC), as a surrogate of volume status, would predict readmission of ADHF patients after index hospitalization. Patients admitted with a primary diagnosis of ADHF were prospectively enrolled. All patients underwent FCU of the IVC on admission and then daily. 82 patients were enrolled. Patients demonstrated improvement in heart failure physical examination findings and symptoms during the hospitalization. There was a reduction in the size of the IVC and a significant increase in patients with small collapsible vena cava. Logistic regression analysis of physical examination, patient symptoms, and IVC parameters at discharge demonstrated IVC collapsibility and patient reported dyspnea improvement as the only significant variables to predict readmission or emergency department visit. FCU assessment of IVC size and collapsibility may be useful in patients with ADHF to predict risk of being readmitted within 30 days of hospital discharge.

Keywords

Focused cardiac ultrasound Inferior vena cava Hospital readmission Congestive heart failure 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the author’s Institutional Review Board and performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Funding

There is no external funding to report.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR, LeWinter MM, Deswal A, Rouleau JL, Ofili EO, Anstrom KJ, Hernandez AF, McNulty SE, Velazquez EJ, Kfoury AG, Chen HH, Givertz MM, Semigran MJ, Bart BA, Mascette AM, Braunwald E, O’Connor CM, N NHFCR (2011) Diuretic strategies in patients with acute decompensated heart failure. New Engl J Med 364 (9):797–805.  https://doi.org/10.1056/NEJMoa1005419 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jencks SF, Williams MV, Coleman EA (2009) Rehospitalizations among patients in the Medicare fee-for-service program. N Engl J Med 360(14):1418–1428.  https://doi.org/10.1056/NEJMsa0803563 CrossRefPubMedGoogle Scholar
  3. 3.
    Amarasingham R, Moore BJ, Tabak YP, Drazner MH, Clark CA, Zhang S, Reed WG, Swanson TS, Ma Y, Halm EA (2010) An automated model to identify heart failure patients at risk for 30-day readmission or death using electronic medical record data. Med Care 48(11):981–988.  https://doi.org/10.1097/MLR.0b013e3181ef60d9 CrossRefPubMedGoogle Scholar
  4. 4.
    Au AG, McAlister FA, Bakal JA, Ezekowitz J, Kaul P, van Walraven C (2012) Predicting the risk of unplanned readmission or death within 30 days of discharge after a heart failure hospitalization. Am Heart J 164(3):365–372.  https://doi.org/10.1016/j.ahj.2012.06.010 CrossRefPubMedGoogle Scholar
  5. 5.
    Hansen LO, Young RS, Hinami K, Leung A, Williams MV (2011) Interventions to reduce 30-day rehospitalization: a systematic review. Ann Intern Med 155(8):U520–U594.  https://doi.org/10.1059/0003-4819-155-8-201110180-00008 CrossRefGoogle Scholar
  6. 6.
    Ambrosy AP, Fonarow GC, Butler J, Chioncel O, Greene SJ, Vaduganathan M, Nodari S, Lam CS, Sato N, Shah AN, Gheorghiade M (2014) The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol 63(12):1123–1133.  https://doi.org/10.1016/j.jacc.2013.11.053 CrossRefPubMedGoogle Scholar
  7. 7.
    Gheorghiade M, Pang PS (2009) Acute heart failure syndromes. J Am Coll Cardiol 53(7):557–573.  https://doi.org/10.1016/j.jacc.2008.10.041 CrossRefPubMedGoogle Scholar
  8. 8.
    Wang CS, FitzGerald JM, Schulzer M, Mak E, Ayas NT (2005) Does this dyspneic patient in the emergency department have congestive heart failure? JAMA 294(15):1944–1956.  https://doi.org/10.1001/jama.294.15.1944 CrossRefPubMedGoogle Scholar
  9. 9.
    Shirakabe A, Hata N, Kobayashi N, Shinada T, Tomita K, Tsurumi M, Matsushita M, Okazaki H, Yamamoto Y, Yokoyama S, Asai K, Mizuno K (2012) Long-term prognostic impact after acute kidney injury in patients with acute heart failure evaluation of the RIFLE criteria. Int Heart J 53(5):313–319CrossRefPubMedGoogle Scholar
  10. 10.
    Thakar CV, Parikh PJ, Liu Y (2012) Acute kidney injury (AKI) and risk of readmissions in patients with heart failure. Am J Cardiol 109(10):1482–1486.  https://doi.org/10.1016/j.amjcard.2012.01.362 CrossRefPubMedGoogle Scholar
  11. 11.
    Spencer KT, Kimura BJ, Korcarz CE, Pellikka PA, Rahko PS, Siegel RJ (2013) Focused cardiac ultrasound: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr 26(6):567–581.  https://doi.org/10.1016/j.echo.2013.04.001 CrossRefPubMedGoogle Scholar
  12. 12.
    Anderson KL, Jenq KY, Fields JM, Panebianco NL, Dean AJ (2013) Diagnosing heart failure among acutely dyspneic patients with cardiac, inferior vena cava, and lung ultrasonography. Am J Emerg Med 31(8):1208–1214CrossRefPubMedGoogle Scholar
  13. 13.
    Besli F, Kecebas M, Caliskan S, Dereli S, Baran I, Turker Y (2015) The utility of inferior vena cava diameter and the degree of inspiratory collapse in patients with systolic heart failure. Am J Emerg Med 33(5):653–657CrossRefPubMedGoogle Scholar
  14. 14.
    Blehar DJ, Dickman E, Gaspari R (2009) Identification of congestive heart failure via respiratory variation of inferior vena cava diameter. Am J Emerg Med 27(1):71–75CrossRefPubMedGoogle Scholar
  15. 15.
    Gil Martinez P, Mesado Martinez D, Curbelo Garcia J, Cadinanos Loidi J (2016) Amino-terminal pro-B-type natriuretic peptide, inferior vena cava ultrasound, and biolectrical impedance analysis for the diagnosis of acute decompensated CHF. Am J Emerg Med 34(9):1817–1822CrossRefPubMedGoogle Scholar
  16. 16.
    Kajimoto K, Madeen K, Nakayama T, Tsudo H, Kuroda T, Abe T (2012) Rapid evaluation by lung-cardiac-inferior vena cava (LCI) integrated ultrasound for differentiating heart failure from pulmonary disease as the cause of acute dyspnea in the emergency setting. Cardiovasc Ultrasound 10(1):49CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mantuani D, Nagdev A (2013) Three-view bedside ultrasound to differentiate acute decompensated heart failure from chronic obstructive pulmonary disease. Am J Emerg Med 31(4):759.e753–e755CrossRefGoogle Scholar
  18. 18.
    Miller JB, Sen A, Strote SR, Hegg AJ, Farris S, Brackney A, Amponsah D, Mossallam U (2012) Inferior vena cava assessment in the bedside diagnosis of acute heart failure. Am J Emerg Med 30(5):778–783CrossRefPubMedGoogle Scholar
  19. 19.
    Yamanoglu A, Celebi Yamanoglu NG, Parlak I, Pinar P, Tosun A, Erkuran B, Akgur A, Satilmis Siliv N (2015) The role of inferior vena cava diameter in the differential diagnosis of dyspneic patients; best sonographic measurement method? Am J Emerg Med 33(3):396–401CrossRefPubMedGoogle Scholar
  20. 20.
    Gheorghiade M, Vaduganathan M, Fonarow GC, Bonow RO (2013) Rehospitalization for heart failure problems and perspectives. J Am Coll Cardiol 61(4):391–403.  https://doi.org/10.1016/j.jacc.2012.09.038 CrossRefPubMedGoogle Scholar
  21. 21.
    Burke RE, Coleman EA (2013) Interventions to decrease hospital readmissions: keys for cost-effectiveness. JAMA Intern Med 173(8):695–698.  https://doi.org/10.1001/jamainternmed.2013.171 CrossRefPubMedGoogle Scholar
  22. 22.
    Abraham WT, Adamson PB, Hasan A, Bourge RC, Pamboukian SV, Aaron MF, Raval NY (2011) Safety and accuracy of a wireless pulmonary artery pressure monitoring system in patients with heart failure. Am Heart J 161(3):558–566.  https://doi.org/10.1016/j.ahj.2010.10.041 CrossRefPubMedGoogle Scholar
  23. 23.
    Blair JE, Brennan JM, Goonewardena SN, Shah D, Vasaiwala S, Spencer KT (2009) Usefulness of hand-carried ultrasound to predict elevated left ventricular filling pressure. Am J Cardiol 103(2):246–247CrossRefPubMedGoogle Scholar
  24. 24.
    Goonewardena SN, Blair JEA, Manuchehry A, Brennan JM, Keller M, Reeves R, Price A, Spencer KT, Puthumana J, Gheorghiade M (2010) Use of hand carried ultrasound, B-type natriuretic peptide, and clinical assessment in identifying abnormal left ventricular filling pressures in patients referred for right heart catheterization. J Card Fail 16(1):69–75CrossRefPubMedGoogle Scholar
  25. 25.
    Ramasubbu K, Deswal A, Chan W, Aguilar D, Bozkurt B (2012) Echocardiographic changes during treatment of acute decompensated heart failure: insights from the ESCAPE trial. J Card Fail 18(10):792–798CrossRefPubMedGoogle Scholar
  26. 26.
    Omar HR, Guglin M (2016) Longitudinal BNP follow-up as a marker of treatment response in acute heart failure: Relationship with objective markers of decongestion. Int J Cardiol 221:167–170CrossRefPubMedGoogle Scholar
  27. 27.
    Yavasi O, Unluer EE, Kayayurt K, Ekinci S, Saglam C, Surum N, Koseoglu MH, Yesil M (2014) Monitoring the response to treatment of acute heart failure patients by ultrasonographic inferior vena cava collapsibility index. Am J Emerg Med 32(5):403–407CrossRefPubMedGoogle Scholar
  28. 28.
    Setoguchi M, Hashimoto Y, Sasaoka T, Ashikaga T, Isobe M (2015) Risk factors for rehospitalization in heart failure with preserved ejection fraction compared with reduced ejection fraction. Heart Vessels 30(5):595–603CrossRefPubMedGoogle Scholar
  29. 29.
    Coiro S, Rossignol P, Ambrosio G, Carluccio E, Alunni G, Murrone A, Tritto I, Zannad F, Girerd N (2015) Prognostic value of residual pulmonary congestion at discharge assessed by lung ultrasound imaging in heart failure. Eur J Heart Fail 17(11):1172–1181CrossRefPubMedGoogle Scholar
  30. 30.
    Cubo-Romano P, Torres-Macho J, Soni NJ, Reyes LF, Rodriguez-Almodovar A, Fernandez-Alonso JM, Gonzalez-Davia R, Casas-Rojo JM, Restrepo MI, de Casasola GG (2016) Admission inferior vena cava measurements are associated with mortality after hospitalization for acute decompensated heart failure. J Hosp Med 11(11):778–784CrossRefPubMedGoogle Scholar
  31. 31.
    Lee H-F, Hsu L-A, Chang C-J, Chan Y-H, Wang C-L, Ho W-J, Chu P-H (2014) Prognostic significance of dilated inferior vena cava in advanced decompensated heart failure. Int J Cardiovasc Imaging 30(7):1289–1295CrossRefPubMedGoogle Scholar
  32. 32.
    Torres D, Cuttitta F, Paterna S, Garofano A, Conti G, Pinto A, Parrinello G (2016) Bed-side inferior vena cava diameter and mean arterial pressure predict long-term mortality in hospitalized patients with heart failure: 36 months of follow-up. Eur J Intern Med 28:80–84CrossRefPubMedGoogle Scholar
  33. 33.
    Carbone F, Bovio M, Rosa GM, Ferrando F, Scarrone A, Murialdo G, Quercioli A, Vuilleumier N, Mach F, Viazzi F, Montecucco F (2014) Inferior vena cava parameters predict re-admission in ischaemic heart failure. Eur J Clin Invest 44(4):341–349.  https://doi.org/10.1111/eci.12238 CrossRefPubMedGoogle Scholar
  34. 34.
    Goonewardena SN, Gemignani A, Ronan A, Vasaiwala S, Blair J, Brennan JM, Shah DP, Spencer KT (2008) Comparison of hand-carried ultrasound assessment of the inferior vena cava and N-terminal pro-brain natriuretic peptide for predicting readmission after hospitalization for acute decompensated heart failure. JACC Cardiovasc Imaging 1(5):595–601.  https://doi.org/10.1016/j.jcmg.2008.06.005 CrossRefPubMedGoogle Scholar
  35. 35.
    Galderisi M, Santoro A, Versiero M, Lomoriello VS, Esposito R, Raia R, Farina F, Schiattarella PL, Bonito M, Olibet M, de Simone G (2010) Improved cardiovascular diagnostic accuracy by pocket size imaging device in non-cardiologic outpatients: the NaUSiCa (Naples Ultrasound Stethoscope in Cardiology) study. Cardiovasc Ultrasound 8:51CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schiano-Lomoriello V, Esposito R, Santoro C, de Simone G, Galderisi M (2015) Early markers of right heart involvement in regular smokers by Pocket Size Imaging Device. Cardiovasc Ultrasound 13:33CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sicari R, Galderisi M, Voigt JU, Habib G, Zamorano JL, Lancellotti P, Badano LP (2011) The use of pocket-size imaging devices: a position statement of the European Association of Echocardiography. Eur J Echocardiogr 12(2):85–87CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Luke J. Laffin
    • 1
  • Amit V. Patel
    • 1
  • Narayan Saha
    • 1
  • Julian Barbat
    • 1
  • James K. Hall
    • 1
  • Matthew Cain
    • 1
  • Kishan Parikh
    • 1
  • Jay Shah
    • 1
  • Kirk T. Spencer
    • 1
  1. 1.Section of Cardiology, Department of MedicineUniversity of Chicago Medical CenterChicagoUSA

Personalised recommendations