Skip to main content
Log in

Efficient workflow for automatic segmentation of the right heart based on 2D echocardiography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The present study aimed to present a workflow algorithm for automatic processing of 2D echocardiography images. The workflow was based on several sequential steps. For each step, we compared different approaches. Epicardial 2D echocardiography datasets were acquired during various open-chest beating-heart surgical procedures in three porcine hearts. We proposed a metric called the global index that is a weighted average of several accuracy coefficients, indices and the mean processing time. This metric allows the estimation of the speed and accuracy for processing each image. The global index ranges from 0 to 1, which facilitates comparison between different approaches. The second step involved comparison among filtering, sharpening and segmentation techniques. During the noise reduction step, we compared the median filter, total variation filter, bilateral filter, curvature flow filter, non-local means filter and mean shift filter. To clarify the endocardium borders of the right heart, we used the linear sharpen. Lastly, we applied watershed segmentation, clusterisation, region-growing, morphological segmentation, image foresting segmentation and isoline delineation. We assessed all the techniques and identified the most appropriate workflow for echocardiography image segmentation of the right heart. For successful processing and segmentation of echocardiography images with minimal error, we found that the workflow should include the total variation filter/bilateral filter, linear sharpen technique, isoline delineation/region-growing segmentation and morphological post-processing. We presented an efficient and accurate workflow for the precise diagnosis of cardiovascular diseases. We introduced the global index metric for image pre-processing and segmentation estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Avendi M, Kheradvar A, Jafarkhani H (2016) Fully automatic segmentation of heart chambers in cardiac MRI using deep learning. J Cardiovasc Magn Reson 18:P351. https://doi.org/10.1186/1532-429X-18-S1-P351

    Article  PubMed Central  Google Scholar 

  2. Kang HC, Lee J, Shin J (2016) Automatic four-chamber segmentation using level-set method and split energy function. Healthc Inform Res 22:285. https://doi.org/10.4258/hir.2016.22.4.285

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ecabert O, Peters J, Walker MJ, Ivanc T, Lorenz C, von Berg J, Lessick J, Vembar M, Weese J (2011) Segmentation of the heart and great vessels in CT images using a model-based adaptation framework. Med Image Anal 15:863–876. https://doi.org/10.1016/j.media.2011.06.004

    Article  PubMed  Google Scholar 

  4. Awan R, Rajpoot K (2015) Spatial and spatio-temporal feature extraction from 4D echocardiography images. Comput Biol Med 64:138–147. https://doi.org/10.1016/j.compbiomed.2015.06.017

    Article  PubMed  Google Scholar 

  5. Danilov VV, Skirnevskiy IP, Gerget OM (2017) Segmentation of anatomical structures of the heart based on echocardiography. J Phys Conf Ser 803:1–5. https://doi.org/10.1088/1742-6596/803/1/012031

    Article  Google Scholar 

  6. Filippov AA, Del Nido PJ, Vasilyev NV (2016) Management of systemic right ventricular failure in patients with congenitally corrected transposition of the great arteries. Circulation 134:1293–1302. https://doi.org/10.1161/CIRCULATIONAHA.116.022106

    Article  PubMed  Google Scholar 

  7. Horvath MA, Wamala I, Rytkin E, Doyle E, Payne CJ, Thalhofer T, Berra I, Solovyeva A, Saeed M, Hendren S, Roche ET, del Nido PJ, Walsh CJ, Vasilyev NV (2017) An intracardiac soft robotic device for augmentation of blood ejection from the failing right ventricle. Ann Biomed Eng 45:2222–2233. https://doi.org/10.1007/s10439-017-1855-z

    Article  PubMed  PubMed Central  Google Scholar 

  8. Payne CJ, Wamala I, Bautista-Salinas D, Saeed M, Van Story D, Thalhofer T, Horvath MA, Abah C, del Nido PJ, Walsh CJ, Vasilyev NV (2017) Soft robotic ventricular assist device with septal bracing for therapy of heart failure. Sci Robot 2:eaan6736. https://doi.org/10.1126/scirobotics.aan6736

    Article  Google Scholar 

  9. Bersvendsen J, Orderud F, Massey RJ, Fossa K, Gerard O, Urheim S, Samset E (2016) Automated segmentation of the right ventricle in 3D echocardiography: a Kalman filter state estimation approach. IEEE Trans Med Imaging 35:42–51. https://doi.org/10.1109/TMI.2015.2453551

    Article  PubMed  Google Scholar 

  10. Brunklaus A, Parish E, Muntoni F, Scuplak S, Tucker SK, Fenton M, Hughes ML, Manzur AY (2015) The value of cardiac MRI versus echocardiography in the pre-operative assessment of patients with Duchenne muscular dystrophy. Eur J Paediatr Neurol 19:395–401. https://doi.org/10.1016/j.ejpn.2015.03.008

    Article  PubMed  CAS  Google Scholar 

  11. Zhu Y, Huang C (2012) An improved median filtering algorithm for image noise reduction. Phys Procedia 25:609–616. https://doi.org/10.1016/j.phpro.2012.03.133

    Article  Google Scholar 

  12. Zeng H, Liu Y-Z, Fan Y-M, Tang X (2012) An improved algorithm for impulse noise by median filter. AASRI Procedia 1:68–73. https://doi.org/10.1016/j.aasri.2012.06.014

    Article  Google Scholar 

  13. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation noise removal algorithm. Phys D Nonlinear Phenom 60:259–268. https://doi.org/10.1016/0167-2789(92)90242-F

    Article  Google Scholar 

  14. Kwon K, Kim M-S, Shin B-S (2016) A fast 3D adaptive bilateral filter for ultrasound volume visualization. Comput Methods Programs Biomed 133:25–34. https://doi.org/10.1016/j.cmpb.2016.05.008

    Article  PubMed  Google Scholar 

  15. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. Int Conf Comput Vis. https://doi.org/10.1109/ICCV.1998.710815

  16. Malladi R, Sethian J (1995) Image processing via level set curvature flow. Proc Natl Acad Sci USA 92:7046–7050. https://doi.org/10.1073/pnas.92.15.7046

    Article  PubMed  CAS  Google Scholar 

  17. Buades A, Coll B, Morel J-M (2011) Non-local means denoising. Image Process Line 1:490–530. https://doi.org/10.5201/ipol.2011.bcm_nlm

    Article  Google Scholar 

  18. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603–619. https://doi.org/10.1109/34.1000236

    Article  Google Scholar 

  19. Ahi K, Anwar M (2016) Developing terahertz imaging equation and enhancement of the resolution of terahertz images using deconvolution. SPIE Commer Sci Sens Imaging 9856:98560N–98560N. https://doi.org/10.1117/12.2228680

    Article  Google Scholar 

  20. Bertero M, Boccacci P (2005) Image deconvolution. Springer, New York, pp 349–370. https://doi.org/10.1007/1-4020-3616-7_17

    Google Scholar 

  21. Arbelaez P, Maire M, Fowlkes C, Malik J, Arbeláez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33:898–916. https://doi.org/10.1109/TPAMI.2010.161

    Article  PubMed  Google Scholar 

  22. Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24:881–892. https://doi.org/10.1109/TPAMI.2002.1017616

    Article  Google Scholar 

  23. Pratt WK (2001) Digital image processing, 3rd edn. Wiley, Rochester, NY. https://doi.org/10.1016/S0146-664X(78)80023-9

    Book  Google Scholar 

  24. Haralick RM, Sternberg SR, Zhuang X (1987) Image analysis using mathematical morphology. IEEE Trans Pattern Anal Mach Intell PAMI -9:532–550. https://doi.org/10.1109/TPAMI.1987.4767941

    Article  Google Scholar 

  25. Falcão AX, Stolfi J, de Alencar Lotufo R (2004) The image foresting transform: theory, algorithms, and applications. IEEE Trans Pattern Anal Mach Intell 26:19–29. https://doi.org/10.1109/TPAMI.2004.10012

    Article  PubMed  Google Scholar 

  26. Popowicz A, Smolka B (2014) Isoline based image colorization. 2014 UKSim-AMSS 16th Int. Conf. Comput. Model. Simul. IEEE, pp 280–285

  27. Serra J (1982) Image analysis and mathematical morphology. Academic Press, Inc, Orlando. https://doi.org/10.2307/2531038

    Google Scholar 

  28. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  PubMed  Google Scholar 

  29. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302. https://doi.org/10.2307/1932409

    Article  Google Scholar 

  30. Sørensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. K Danske Vidensk Selsk Biol Skr 5:1–34

    Google Scholar 

  31. Jaccard P (1901) Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull del la Société. Vaudoise des Sci Nat 37:547–579. https://doi.org/10.5169/seals-266450

    Article  Google Scholar 

  32. Shapiro MD, Blaschko MB (2004) On Hausdorff distance measures. Comput Vis Lab Univ Mass Amherst MA 1003:1–21

    Google Scholar 

  33. Dubuisson M-P, Jain AK (1994) A modified Hausdorff distance for object matching. Proc 12th Int Conf Pattern Recognit 1:566–568. https://doi.org/10.1109/ICPR.1994.576361

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Federation Governmental Program ‘Nauka’ № 12.8205.2017/БЧ (Addition Number: 4.1769.ГЗБ.2017) and the Tomsk Polytechnic University Competitiveness Enhancement Programme Grant (TPU CEP-RIO-52/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay V. Vasilyev.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Research involving human participants and animals

The animal experimental protocols were approved by the Boston Children’s Hospital Institutional Animal Care and Use Committee. All animals received humane care in accordance with the 1996 Guide for the Care and Use of Laboratory Animals recommended by the US National Institutes of Health. This paper does not contain any studies using human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, V.V., Skirnevskiy, I.P., Gerget, O.M. et al. Efficient workflow for automatic segmentation of the right heart based on 2D echocardiography. Int J Cardiovasc Imaging 34, 1041–1055 (2018). https://doi.org/10.1007/s10554-018-1314-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-018-1314-4

Keyword

Navigation