Skip to main content

Association between flow skewness and aortic dilatation in patients with aortic stenosis

Abstract

We investigated association between hemodynamic characteristics and aortic dilatation in patients with severe aortic stenosis (AS). Eighty patients with severe AS (mean age, 67.2 ± 12.5 years) who underwent multi-detector computed tomography and phase-contrast magnetic resonance imaging at the ascending aorta were retrospectively analyzed. Patients with an ascending aorta diameter >4 cm had a significantly higher forward flow rate at systole (28.5 ± 6.0 vs. 36.2 ± 8.6 L min, P < 0.001), and retrograde flow rate at systole (11.3 ± 4.2 vs. 18.8 ± 5.8 L min, P < 0.001), fractional reverse ratio (a ratio of retrograde flow rate to forward flow rate; 34.1 ± 11.9% vs. 43.5 ± 18.0%, P = 0.014), flow skewness Rskewness (a ratio of sum of forward and retrograde systole flow to net systole flow rate; 2.4 ± 0.7 vs. 3.2 ± 1.0, P < 0.001). The presence of bicuspid aortic valve (BAV; odds ratio [OR] 72.01, 95% confidence interval [CI] 10.57–490.46, P < 0.001), Left ventricular mass index (LVMI; OR 1.02 /g/m2; CI 1.00–1.04, P = 0.043) and Rskewness (OR 5.6 per 1, 95% CI 1.8–17.1, P = 0.001) were associated with aortic dilatation. BAV, LVMI, and increased Rskewness in the ascending aorta are associated with aortic dilatation in patients with AS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ward C (2000) Clinical significance of the bicuspid aortic valve. Heart 83(1):81–85

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Basso C, Boschello M, Perrone C, Mecenero A, Cera A, Bicego D, Thiene G, De Dominicis E (2004) An echocardiographic survey of primary school children for bicuspid aortic valve. Am J Cardiol 93(5):661–663

    Article  PubMed  Google Scholar 

  3. Nistri S, Basso C, Marzari C, Mormino P, Thiene G (2005) Frequency of bicuspid aortic valve in young male conscripts by echocardiogram. Am J Cardiol 96(5):718–721

    Article  PubMed  Google Scholar 

  4. Roberts WC, Ko JM (2005) Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation 111(7):920–925

    Article  PubMed  Google Scholar 

  5. Nistri S, Sorbo M, Marin M, Palisi M, Scognamiglio R, Thiene G (1999) Aortic root dilatation in young men with normally functioning bicuspid aortic valves. Heart 82(1):19–22

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Hahn RT, Roman MJ, Mogtadek AH, Devereux RB (1992) Association of aortic dilation with regurgitant, stenotic and functionally normal bicuspid aortic valves. J Am Coll Cardiol 19(2):283–288

    CAS  Article  PubMed  Google Scholar 

  7. Sabet HY, Edwards WD, Tazelaar HD, Daly RC (1999) Congenitally bicuspid aortic valves: a surgical pathology study of 542 cases (1991 through 1996) and a literature review of 2,715 additional cases. Mayo Clin Proc 1:14–26

    Article  Google Scholar 

  8. Fernandes SM, Sanders SP, Khairy P, Jenkins KJ, Gauvreau K, Lang P, Simonds H, Colan SD (2004) Morphology of bicuspid aortic valve in children and adolescents. J Am Coll Cardiol 44(8):1648–1651

    Article  PubMed  Google Scholar 

  9. Sievers H-H, Sievers HL (2011) Aortopathy in bicuspid aortic valve disease—genes or hemodynamics? or Scylla and Charybdis? Eur J Cardiothorac Surg 39(6):803–804

    Article  PubMed  Google Scholar 

  10. Loscalzo ML, Goh DL, Loeys B, Kent KC, Spevak PJ, Dietz HC (2007) Familial thoracic aortic dilation and bicommissural aortic valve: a prospective analysis of natural history and inheritance. Am J Med Genet Part A 143(17):1960–1967

    Article  Google Scholar 

  11. Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW (2004) Bicuspid aortic valve is heritable. J Am Coll Cardiol 44(1):138–143

    Article  PubMed  Google Scholar 

  12. Fedak PW, Verma S, David TE, Leask RL, Weisel RD, Butany J (2002) Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation 106(8):900–904

    Article  PubMed  Google Scholar 

  13. Yasuda H, Nakatani S, Stugaard M, Tsujita-Kuroda Y, Bando K, Kobayashi J, Yamagishi M, Kitakaze M, Kitamura S, Miyatake K (2003) Failure to prevent progressive dilation of ascending aorta by aortic valve replacement in patients with bicuspid aortic valve: comparison with tricuspid aortic valve. Circulation 108(10 suppl 1):II-291–II-294

    Google Scholar 

  14. Tadros TM, Klein MD, Shapira OM (2009) Ascending aortic dilatation associated with bicuspid aortic valve pathophysiology, molecular biology, and clinical implications. Circulation 119(6):880–890

    Article  PubMed  Google Scholar 

  15. Bissell MM, Hess AT, Biasiolli L, Glaze SJ, Loudon M, Pitcher A, Davis A, Prendergast B, Markl M, Barker AJ (2013) Aortic dilation in bicuspid aortic valve disease flow pattern is a major contributor and differs with valve fusion type. Circ Cardiovasc Imaging 6(4):499–507

    Article  PubMed  Google Scholar 

  16. Barker AJ, Markl M, Bürk J, Lorenz R, Bock J, Bauer S, Schulz-Menger J, von Knobelsdorff-Brenkenhoff F (2012) Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging 5(4):457–466

    Article  PubMed  Google Scholar 

  17. Meierhofer C, Schneider EP, Lyko C, Hutter A, Martinoff S, Markl M, Hager A, Hess J, Stern H, Fratz S (2013) Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study. Eur Heart J Cardiovasc Imaging 14(8):797–804

    Article  PubMed  Google Scholar 

  18. Guzzardi DG, Barker AJ, van Ooij P, Malaisrie SC, Puthumana JJ, Belke DD, Mewhort HE, Svystonyuk DA, Kang S, Verma S (2015) Valve-related hemodynamics mediate human bicuspid aortopathy: insights from wall shear stress mapping. J Am Coll Cardiol 66(8):892–900

    Article  PubMed  PubMed Central  Google Scholar 

  19. Raghav V, Barker AJ, Mangiameli D, Mirabella L, Markl M, Yoganathan AP (2017) Valve mediated hemodynamics and their association with distal ascending aortic diameter in bicuspid aortic valve subjects. J Magn Reson Imaging. doi: 10.1002/jmri.25719

    PubMed  Google Scholar 

  20. Lehoux S, Tedgui A (2003) Cellular mechanics and gene expression in blood vessels. J Biomech 36(5):631–643

    Article  PubMed  Google Scholar 

  21. Piatti F, Pirola S, Bissell M, Nesteruk I, Sturla F, Della Corte A, Redaelli A, Votta E (2017) Towards the improved quantification of in vivo abnormal wall shear stresses in BAV-affected patients from 4D-flow imaging: benchmarking and application to real data. J Biomech 50:93–101

    CAS  Article  PubMed  Google Scholar 

  22. Saikrishnan N, Mirabella L, Yoganathan AP (2015) Bicuspid aortic valves are associated with increased wall and turbulence shear stress levels compared to trileaflet aortic valves. Biomech Model Mechanobiol 14(3):577–588

    Article  PubMed  Google Scholar 

  23. Shan Y, Li J, Wang Y, Wu B, Barker AJ, Markl M, Wang C, Wang X, Shu X (2017) Aortic shear stress in patients with bicuspid aortic valve with stenosis and insufficiency. J Thorac Cardiovasc Surg 156(6):1263–1272

    Article  Google Scholar 

  24. Kimura N, Nakamura M, Komiya K, Nishi S, Yamaguchi A, Tanaka O, Misawa Y, Adachi H, Kawahito K (2017) Patient-specific assessment of hemodynamics by computational fluid dynamics in patients with bicuspid aortopathy. J Thorac Cardiovasc Surg 153(4):S52–S62 [e53]

    Article  Google Scholar 

  25. Youssefi P, Sharma R, Figueroa CA, Jahangiri M (2016) Functional assessment of thoracic aortic aneurysms–the future of risk prediction? Br Med Bull 121(1):61–71

    Article  Google Scholar 

  26. Barker AJ, Lanning C, Shandas R (2010) Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann Biomed Eng 38(3):788–800

    Article  PubMed  Google Scholar 

  27. Mirabella L, Barker AJ, Saikrishnan N, Coco ER, Mangiameli DJ, Markl M, Yoganathan AP (2015) MRI-based protocol to characterize the relationship between bicuspid aortic valve morphology and hemodynamics. Ann Biomed Eng 43(8):1815–1827

    Article  PubMed  Google Scholar 

  28. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin III JP, Guyton RA, O’Gara PT, Ruiz CE, Skubas NJ, Sorajja P, Sundt III TM, Thomas JD, American College of Cardiology/American Heart Association, Task Force on Practice G (2014) 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63 (22):e57–e185. doi:10.1016/j.jacc.2014.02.536

    Article  PubMed  Google Scholar 

  29. Achenbach S, Delgado V, Hausleiter J, Schoenhagen P, Min JK, Leipsic JA (2012) SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr 6(6):366–380. doi:10.1016/j.jcct.2012.11.002

    Article  PubMed  Google Scholar 

  30. Kang JW, Song HG, Yang DH, Baek S, Kim DH, Song JM, Kang DH, Lim TH, Song JK (2013) Association between bicuspid aortic valve phenotype and patterns of valvular dysfunction and bicuspid aortopathy: comprehensive evaluation using MDCT and echocardiography. JACC Cardiovasc Imaging 6(2):150–161. doi:10.1016/j.jcmg.2012.11.007

    Article  PubMed  Google Scholar 

  31. Ha H, Choi W, Park H, Lee SJ (2014) Advantageous swirling flow in 45° end-to-side anastomosis. Exp Fluids 55(12):1–13

    CAS  Article  Google Scholar 

  32. von Knobelsdorff-Brenkenhoff F, Karunaharamoorthy A, Trauzeddel RF, Barker AJ, Blaszczyk E, Markl M, Schulz-Menger J (2016) Evaluation of aortic blood flow and wall shear stress in aortic stenosis and its association with left ventricular remodeling. Circ Cardiovasc Imaging 9(3):e004038

    Google Scholar 

  33. Girdauskas E, Rouman M, Disha K, Fey B, Dubslaff G, Theis B, Petersen I, Gutberlet M, Borger MA, Kuntze T (2016) Functional aortic root parameters and expression of aortopathy in bicuspid versus tricuspid aortic valve stenosis. J Am Coll Cardiol 67(15):1786–1796

    Article  PubMed  Google Scholar 

  34. Burris NS, Sigovan M, Knauer HA, Tseng EE, Saloner D, Hope MD (2014) Systolic flow displacement correlates with future ascending aortic growth in patients with bicuspid aortic valves undergoing magnetic resonance surveillance. Invest Radiol 49(10):635–639

    Article  PubMed  Google Scholar 

  35. Stalder A, Russe M, Frydrychowicz A, Bock J, Hennig J, Markl M (2008) Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med 60(5):1218–1231

    CAS  Article  PubMed  Google Scholar 

  36. Sigovan M, Hope MD, Dyverfeldt P, Saloner D (2011) Comparison of four-dimensional flow parameters for quantification of flow eccentricity in the ascending aorta. J Magn Reson Imaging 34(5):1226–1230

    Article  PubMed  Google Scholar 

  37. Sherwin S, Blackburn HM (2005) Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows. J Fluid Mech 533:297–327

    Article  Google Scholar 

  38. Varghese SS, Frankel SH, Fischer PF (2007) Direct numerical simulation of stenotic flows. Part 1. Steady flow. J Fluid Mech 582:253–280

    Article  Google Scholar 

  39. Dyverfeldt P, Hope MD, Tseng EE, Saloner D (2013) Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis. JACC Cardiovasc Imaging 6(1):64–71

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ha H, Kim GB, Kweon J, Huh HK, Lee SJ, Koo HJ, Kang J-W, Lim T-H, Kim D-H, Kim Y-H (2016) Turbulent kinetic energy measurement using phase contrast MRI for estimating the post-stenotic pressure drop: in vitro validation and clinical application. PloS ONE 11(3):e0151540

    Article  PubMed  PubMed Central  Google Scholar 

  41. Casas B, Lantz J, Dyverfeldt P, Ebbers T (2015) 4D flow MRI-Based pressure loss estimation in stenotic flows: evaluation using numerical simulations. Magn Reson Med 75(4):1808–1821

    Article  PubMed  Google Scholar 

  42. Petersson S, Dyverfeldt P, Ebbers T (2012) Assessment of the accuracy of MRI wall shear stress estimation using numerical simulations. J Magn Reson Imaging 36(1):128–138

    Article  PubMed  Google Scholar 

  43. Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Buechel ERV, Yoo S-J, Powell AJ (2013) Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 15(1):51

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1A1A1A05921207, 2015R1A2A2A04003034) and a grant (2017-7208) from the Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea. The study protocol was approved by the hospital institutional review board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Hyun Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 366 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ha, H., Koo, H.J., Lee, J.G. et al. Association between flow skewness and aortic dilatation in patients with aortic stenosis. Int J Cardiovasc Imaging 33, 1969–1978 (2017). https://doi.org/10.1007/s10554-017-1196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-017-1196-x

Keywords

  • Phase-contrast magnetic resonance imaging
  • 2D PC-MRI
  • Wall shear stress
  • Aortic stenosis
  • Hemodynamics
  • Aortic dilatation