Advertisement

Incidental findings in cardiac magnetic resonance imaging: superiority of bSSFP over T1w-HASTE for extra-cardiac findings assessment

  • Jan M. Sohns
  • Jan Menke
  • Alexander Schwarz
  • Leonard Bergau
  • Johannes T. Kowallick
  • Andreas Schuster
  • Frank Konietschke
  • Marius Placzek
  • Desiree Weiberg
  • Stefan Nordlohne
  • Sebastian Schmuck
  • Sebastian Schulz
  • Thorsten Derlin
  • Wieland Staab
Original Paper

Abstract

Incidental findings are frequent in radiological examinations and may have an impact on further patient management. The aim of this retrospective study was to analyze, which of two thoracic scout sequences is more suitable for detecting incidental extra-cardiac findings at cardiac magnetic resonance imaging (CMRI) with stress perfusion. During a 14-month period clinically indicated stress perfusion CMRI was performed in 97 consecutive patients. For anatomical orientation ECG-triggered (electrocardiography) T1w-Half-fourier acquisition single-shot turbo spin-echo (HASTE) and balanced steady state free precession (bSSFP) sequences were performed for planning the standard cardiac sequences. Two radiologists independently studied incidental extra-cardiac findings with both sequences and rated the diagnostic confidence of the sequences for this assessment using a multinomial model. Furthermore, the interobserver agreement between the observers was assessed by weighted kappa statistics. Eight patients without incidental findings were excluded. In the other 89 patients a total of 153 incidental extra-cardiac findings were observed. Overall, 47.1% of findings were seen with better diagnostic confidence at bSSFP as opposed to 20.6% at T1w-HASTE. 32.4% of findings were equally well seen with both sequences. Consequently the bSSFP sequence was significantly better in terms of diagnostic confidence for detecting the majority of extra-cardiac incidental findings (P < 0.01), whereas a minority of findings was better visible by the HASTE sequence. The weighted kappa statistics was 0.85, indicating good interobserver agreement. Compared with T1w-HASTE, the bSSFP sequence improved the visibility of incidental extra-cardiac findings at stress perfusion CMRI. While all findings were seen on both sequences, bSSFP resulted in improved diagnostic confidence, and the T1w-HASTE sequence provided complementary diagnostic information in only a minority of patients.

Keywords

Cardiac MRI Localizer sequences Extra-cardiac pathologies HASTE bSSFP 

Abbreviations

CMRI

Cardiac magnetic resonance imaging

HASTE

Half-fourier acquisition single-shot turbo spin echo

bSSFP

Balanced steady state free precession

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Dickstein K, Cohen-Solal A, Filippatos G, McMurray JJ, Ponikowski P, Poole-Wilson PA, ESC Committee for Practice Guidelines (CPG) (2008)ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 29:2388–2442CrossRefPubMedGoogle Scholar
  2. 2.
    Pohost GM, Hung L, Doyle M (2003) Clinical use of cardiovascular magnetic resonance. Circulation 108:647–653CrossRefPubMedGoogle Scholar
  3. 3.
    Marcu CB, Beek AM, van Rossum AC (2006) Clinical applications of cardiovascular magnetic resonance imaging. CMAJ 175:911–917CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fuster V, Kim RJ (2005) Frontiers in cardiovascular magnetic resonance. Circulation 112:135–144CrossRefPubMedGoogle Scholar
  5. 5.
    Fischbach R, Miller M, Beer S, Lotz J, Kivelitz D (2009) Empfehlungen der Arbeitsgemeinschaft Herzdiagnostik der Deutschen Röntgengesellschaft für den Einsatz von Computertomografie und Magnetresonanztomografie in der Herzdiagnostik. Rofo 181:700–706CrossRefPubMedGoogle Scholar
  6. 6.
    Abbasi SA, Ertel A, Shah RV, Dandekar V, Chung J, Bhat G, Desai AA, Kwong RY, Farzaneh-Far A (2013) Impact of cardiovascular magnetic resonance on management and clinical decision-making in heart failure patients. J Cardiovasc Magn Reson 15:89CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Coelho-Filho OR, Rickers C, Kwong RY, Jerosch-Herold M (2013) MR myocardial perfusion imaging. Radiology 266:701–715CrossRefPubMedGoogle Scholar
  8. 8.
    Dewey M, Schnapauff D, Teige F, Hamm B (2007) Non-cardiac findings on coronary computed tomography and magnetic resonance imaging. Eur Radiol 17:2038–2043CrossRefPubMedGoogle Scholar
  9. 9.
    McKenna DA, Laxpati M, Colletti PM (2008) The prevalence of incidental findings at cardiac MRI. Open Cardiovasc Med J 2:20–25CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Vogel-Claussen J, Li D, Carr J, Liu K, Szklo M, Lima JA, Bluemke DA (2009) Extracoronary abnormalities on coronary magnetic resonance angiography in the multiethnic study of atherosclerosis study: frequency and clinical significance. J Comput Assist Tomogr 33:752–754CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hegenscheid K, Kuhn JP, Volzke H, Biffar R, Hosten N, Puls R (2009) Whole-body magnetic resonance imaging of healthy volunteers: pilot study results from the population-based SHIP study. Rofo 181:748–759CrossRefPubMedGoogle Scholar
  12. 12.
    Zimmermann S, Pistner W, Uebis R, Freund M (2007) Relevant secondary findings in magnetic resonance imaging of the heart using the examples of a bronchial carcinoma and a malignant lymphoma. Radiologe 47:915–918CrossRefPubMedGoogle Scholar
  13. 13.
    Chan PG, Smith MP, Hauser TH, Yeon SB, Appelbaum E, Rofsky NM, Manning WJ (2009) Noncardiac pathology on clinical cardiac magnetic resonance imaging. JACC Cardiovasc Imaging 2:980–986CrossRefPubMedGoogle Scholar
  14. 14.
    Atalay MK, Prince EA, Pearson CA, Chang KJ (2011) The prevalence and clinical significance of noncardiac findings on cardiac MRI. Am J Roentgenol 196:387–393CrossRefGoogle Scholar
  15. 15.
    Khosa F, Romney BP, Costa DN, Rofsky NM, Manning WJ (2011) Prevalence of noncardiac findings on clinical cardiovascular MRI. Am J Roentgenol 196:W380–W386CrossRefGoogle Scholar
  16. 16.
    Hegenscheid K, Seipel R, Schmidt CO, Volzke H, Kuhn JP, Biffar R, Kroemer HK, Hosten N, Puls R (2013) Potentially relevant incidental findings on research whole-body MRI in the general adult population: frequencies and management. Eur Radiol 23:816–826CrossRefPubMedGoogle Scholar
  17. 17.
    Sohns JM, Schwarz A, Menke J, Staab W, Spiro JE, Lotz J, Unterberg-Buchwald C (2014) Prevalence and clinical relevance of extracardiac findings at cardiac MRI. J Magn Reson Imaging 39:68–76CrossRefPubMedGoogle Scholar
  18. 18.
    Wyttenbach R, Medioni N, Santini P, Vock P, Szucs-Farkas Z (2012) Extracardiac findings detected by cardiac magnetic resonance imaging. Eur Radiol 22:1295–1302CrossRefPubMedGoogle Scholar
  19. 19.
    Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E (2013) Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson 15:91CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    SAS/STAT 9.3 User’s Guide (2012) PROC MCMC. http://support.sas.com. Accessed Mar 11, 2012
  21. 21.
    Dobson AJ, Barnett AG (2008) An introduction to generalized linear models. 3rd edn. CRC Press, Chapman & Hall, Boca RatonGoogle Scholar
  22. 22.
    Armitage P, Berry G (1994) Statistical methods in medical research. 3rd edn. Blackwell Science, OxfordGoogle Scholar
  23. 23.
    Douglas PS, Cerqueria M, Rubin GD, Chin AS (2008) Extracardiac findings: what is a cardiologist to do? JACC Cardiovasc Imaging 1:682–687CrossRefPubMedGoogle Scholar
  24. 24.
    Machaalany J, Yam Y, Ruddy TD, Abraham A, Chen L, Beanlands RS, Chow BJ (2009) Potential, clinical, and economic consequences of noncardiac incidental findings on cardiac computed tomography. J Am Coll Cardiol 54:1533–1541CrossRefPubMedGoogle Scholar
  25. 25.
    Schuster A, Morton G, Chiribiri A, Perera D, Vanoverschelde JL, Nagel E (2012) Imaging in the management of ischemic cardiomyopathy. J Am Coll Cardiol 59:359–370CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Jan M. Sohns
    • 1
    • 2
  • Jan Menke
    • 3
  • Alexander Schwarz
    • 3
  • Leonard Bergau
    • 2
    • 4
  • Johannes T. Kowallick
    • 2
    • 3
  • Andreas Schuster
    • 2
    • 4
  • Frank Konietschke
    • 5
  • Marius Placzek
    • 6
  • Desiree Weiberg
    • 1
  • Stefan Nordlohne
    • 1
  • Sebastian Schmuck
    • 1
  • Sebastian Schulz
    • 1
  • Thorsten Derlin
    • 1
  • Wieland Staab
    • 2
    • 3
  1. 1.Department of Nuclear Medicine, Center of RadiologyHannover Medical SchoolHannoverGermany
  2. 2.German Centre for Cardiovascular ResearchDZHKBerlinGermany
  3. 3.Institute for Diagnostic and Interventional RadiologyGeorg-August-University, UMGGöttingenGermany
  4. 4.Department of Cardiology and PneumologyGeorg-August-University, UMGGöttingenGermany
  5. 5.Department of Mathematical SciencesThe University of Texas at DallasRichardsonUSA
  6. 6.Department of Medical StatisticsGeorg-August-University, UMGGöttingenGermany

Personalised recommendations