Advertisement

SASHA versus ShMOLLI: a comparison of T1 mapping methods in health and dilated cardiomyopathy at 3 T

  • Benedict T. Costello
  • Fabian Springer
  • James L. Hare
  • Andre La Gerche
  • Leah Iles
  • Andris H. Ellims
  • Benjamin Schmitt
  • Andrew J. Taylor
Original Paper

Abstract

Cardiac Magnetic Resonance derived T1 mapping parameters are a non-invasive method of estimating diffuse myocardial fibrosis. This study aims to to determine the native T1 time, post contrast T1 time and extracellular volume (ECV) derived from T1 mapping and to evaluate the ability of T1 mapping techniques to discriminate healthy myocardium from dilated cardiomyopathy. Seventy-nine participants underwent cardiac magnetic resonance imaging at the Baker Heart and Diabetes Institute, Melbourne, Australia. Fifty-seven healthy volunteers and twenty-two patients with Dilated cardiomyopathy were included in the study. Each participant had T1 mapping sequences performed at 3 T in the mid short axis slice—both SASHA and ShMOLLI T1 mapping were performed. Native T1, post contrast T1 and ECV values were compared in health and dilated cardiomyopathy. Native T1, post contrast T1 and ECV differed significantly between SASHA and ShMOLLI techniques (P < 0.001). All T1 parameters had similar ability to discriminate normal from abnormal myocardium (ROC AUC 0.691 to 0.830). Converting T1 values to Z scores significantly improved the agreement between SASHA and ShMOLLI techniques, particularly for post contrast T1 (ICC 0.19 to 0.895) and ECV (ICC 0.461 to 0.880). T1 mapping values from SASHA and ShMOLLI show strong correlation for post contrast measures, though with a consistent offset for all measures in health and dilated cardiomyopathy. All measures obtained using SASHA and ShMOLLI allow good discrimination between dilated cardiomyopathy and normal myocardium.

Keywords

Cardiac magnetic resonance Cardiomyopathy T1 mapping Fibrosis 

Abbreviations

SASHA

Saturation recovery single shot acquisition

MOLLI

Modified look locker

ShMOLLI

Shortened modified look locker

CMR

Cardiac magnetic resonance

ECV

Extracellular volume

3T

3 Tesla

LVEF

Left ventricular ejection fraction

DCM

Dilated cardiomyopathy

eGFR

Estimated glomerular filtration rate

SAX

Short axis

ROC

Receiver operator characteristic

AUC

Area under curve

SD

Standard deviation

ICC

Intraclass correlation coefficient

Notes

Acknowledgements

We thank the Baker IDI Heart and Diabetes Institute radiology staff for their assistance in this project.

Funding

AJT is supported by a National Health and Medical Research Council project grant.

Author contributions

BC—conception, design and analysis and interpretation of data, and drafting of the manuscript; FS—analysis of data and revision of the manuscript; JH—conception and design and revision of the manuscript; ALG—analysis and interpretation of data, revision of manuscript; LI—revision of manuscript; AE—revision of manuscript; BS—revision of manuscript and technical advice; AJT—conception, design and analysis and interpretation of data, revision of the manuscript and final approval.

Compliance with ethical standards

Conflict of interest

Benjamin Schmitt is an employee of Siemens Healthineers.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the Alfred Hospital Ethics Committee (Melbourne, Australia) and carried out under their guidelines. Prior to inclusion in the study written informed consent was obtained from all participants.

Availability of supporting data

The anonymized datasets analyzed during the current study are available from the corresponding author, on reasonable request.

Supplementary material

10554_2017_1134_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 25 KB)

References

  1. 1.
    Grothues F, Smith GC, Moon JCC, Bellenger NG, Collins P, Klein HU et al (2002) Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol Elsevier 90:29–34CrossRefGoogle Scholar
  2. 2.
    Bellenger N (2000) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Are they interchangeable? Eur Heart J 21:1387–1396CrossRefPubMedGoogle Scholar
  3. 3.
    Mewton N, Chia YL, Croisille P, Bluemke D, Lima J (2011) Assessment of myocardial fibrosis with cardiac magnetic resonance. J Am Coll Cardiol 57:891–903CrossRefPubMedGoogle Scholar
  4. 4.
    Iles LM, Ellims AH, Llewellyn H, Hare JL, Kaye DM, McLean CA et al (2015) Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur Heart J Cardiovasc Imaging 16:14–22CrossRefPubMedGoogle Scholar
  5. 5.
    Thakrar D, Collins J, Rustogi R, Kino A, Zuehlsdorff S, Carr J (2012) T2 Mapping of the myocardium, a quantitative tool for assessment of myocarditis. J Cardiovasc Magn Reson 14:P177CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Carpenter JP, He T, Kirk P, Roughton M, Anderson LJ, de Noronha SV et al (2011) On T2* magnetic resonance and cardiac iron. Circulation 123:1519–1528CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M (2016) T1 mapping. JACC Cardiovasc Imaging 9:67–81CrossRefPubMedGoogle Scholar
  8. 8.
    Messroghli DR, Walters K, Plein S, Sparrow P, Friedrich MG, Ridgway JP et al (2007) MyocardialT1 mapping: application to patients with acute and chronic myocardial infarction. Magn Reson Med 58:34–40CrossRefPubMedGoogle Scholar
  9. 9.
    Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP (2004) Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52:141–146CrossRefPubMedGoogle Scholar
  10. 10.
    Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM et al (2010) Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 122:138–144CrossRefPubMedGoogle Scholar
  11. 11.
    Iles L, Pfluger H, Phrommintikul A, Cherayath J, Aksit P, Gupta SN et al (2008) Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 52:1574–1580CrossRefPubMedGoogle Scholar
  12. 12.
    Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K et al (2013) Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging 6:475–484CrossRefPubMedGoogle Scholar
  13. 13.
    White SK, Sado DM, Fontana M, Banypersad SM, Maestrini V, Flett AS et al (2013) T1 mapping for myocardial extracellular volume measurement by CMR. JACC Cardiovasc Imaging 6:955–962CrossRefPubMedGoogle Scholar
  14. 14.
    Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M et al (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15:92CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Schmitt P, Griswold MA, Jakob PM, Kotas M, Gulani V, Flentje M et al (2004) Inversion recovery TrueFISP: quantification ofT1,T2, and spin density. Magn Reson Med 51:661–667CrossRefPubMedGoogle Scholar
  16. 16.
    Cain PA, Ahl R, Hedstrom E, Ugander M, Allansdotter-Johnsson A, Friberg P et al (2009) Age and gender specific normal values of left ventricular mass, volume and function for gradient echo magnetic resonance imaging: a cross sectional study. BMC Med Imaging 9:727–736CrossRefGoogle Scholar
  17. 17.
    Miller CA, Naish JH, Bishop P, Coutts G, Clark D, Zhao S et al (2013) Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging 6:373–383CrossRefPubMedGoogle Scholar
  18. 18.
    Gai N, Turkbey EB, Nazarian S, van der Geest RJ, Liu C-Y, Lima JAC et al (2010) T1mapping of the gadolinium-enhanced myocardium: adjustment for factors affecting interpatient comparison. Magn Reson Med 65:1407–1415CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kellman P, Wilson JR, Xue H, Ugander M, Arai AE (2012) Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson BioMed Central 14:63CrossRefGoogle Scholar
  20. 20.
    Roujol S, Weingärtner S, Foppa M, Chow K, Kawaji K, Ngo LH et al (2014) Accuracy, precision, and reproducibility of Four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology 272:683–689CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dabir D, Child N, Kalra A, Rogers T, Gebker R, Jabbour A et al (2014) Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 16:34–45CrossRefGoogle Scholar
  22. 22.
    Bull S, White SK, Piechnik SK, Flett AS, Ferreira VM, Loudon M et al (2013) Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart 99:932–937CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    de Ravenstein CD, Bouzin C, Lazam S, Boulif J, Amzulescu M, Melchior J et al (2015) Histological Validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from Modified Look-Locker imaging (MOLLI) T1 mapping at 3 T. J Cardiovasc Magn Reson BioMed Central 17:1268–1278Google Scholar
  24. 24.
    Liu C-Y, Liu Y-C, Wu C, Armstrong A, Volpe GJ, van der Geest RJ et al (2013) Evaluation of Age-Related Interstitial Myocardial Fibrosis With Cardiac Magnetic Resonance Contrast-Enhanced T1 Mapping. J Am Coll Cardiol 62:1280–1287CrossRefPubMedGoogle Scholar
  25. 25.
    Rosmini S, Bulluck H, Treibel TA, Abdel-Gadir A, Bhuva AN, Culotta V et al (2016) Native myocardial T1 and ECV with age and gender developing normal reference ranges - a 94 healthy volunteer study. J Cardiovasc Magn Reson BioMed Central 18:O42CrossRefGoogle Scholar
  26. 26.
    Teixeira T, Hafyane T, Stikov N, Akdeniz C, Greiser A, Friedrich MG (2016) Comparison of different cardiovascular magnetic resonance sequences for native myocardial T1 mapping at 3T. J Cardiovasc Magn Reson 18:1057CrossRefGoogle Scholar
  27. 27.
    Weingärtner S, Meßner NM, Budjan J, Loßnitzer D, Mattler U, Papavassiliu T et al (2016) Myocardial T1-mapping at 3T using saturation-recovery: reference values, precision and comparison with MOLLI. J Cardiovasc Magn Reson 18:126CrossRefGoogle Scholar
  28. 28.
    Meijers WC, van der Velde AR, Muller Kobold AC, Dijck-Brouwer J, Wu AH, Jaffe A et al (2016) Variability of biomarkers in patients with chronic heart failure and healthy controls. Eur J Heart Fail 19:357–365CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Benedict T. Costello
    • 1
    • 2
  • Fabian Springer
    • 1
    • 2
  • James L. Hare
    • 1
    • 2
  • Andre La Gerche
    • 1
    • 2
  • Leah Iles
    • 1
    • 2
  • Andris H. Ellims
    • 1
    • 2
  • Benjamin Schmitt
    • 3
  • Andrew J. Taylor
    • 1
    • 2
    • 4
  1. 1.The Alfred HospitalMelbourneAustralia
  2. 2.Baker Heart and Diabetes InstituteMelbourneAustralia
  3. 3.Siemens HealthineersErlangenGermany
  4. 4.Heart CentreMelbourneAustralia

Personalised recommendations