Skip to main content

Advertisement

Log in

Two-by-two cross-over study to evaluate agreement between versions of a quantitative coronary analysis system (QAngio XA)

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The current version (ver. 7.3) of the popular quantitative coronary analysis system QAngio XA (Medis Medical Imaging System BV, Leiden, the Netherlands) is widely used without evaluating the agreement between the current and older versions in relation to a change of algorithms. The purpose of this study was to assess the equivalence of averages between QAngio XA versions 7.3 and 6.0. Based on the calculated sample size, angiographic images of 100 patients who underwent percutaneous coronary intervention of a single target lesion were randomly selected from two published studies (OUCH-TL: 154 lesions; OUCH-PRO: 160 lesions). The primary endpoint was the minimum lumen diameter (MLD), and the secondary endpoints were the reference diameter (RefD) and length of the stenotic lesion (LL). Two independent analysts measured the same frame using both previous and current versions of QAngio XA. Version-order for each lesion was randomly determined per coronary locations targeted. Data were analysed by using a mixed model that includes random lesion effects and fixed rater effects and reading-order effects. A Bland–Altman plot of parameters showed no large differences between the versions. Differences in parameters were estimated by the mixed model, and the 95% confidence interval of the MLD, RefD, and LL estimates was from −0.045 to −0.0001 mm, from −0.040 to 0.006 mm, and from −1.08 to 0.46 mm, respectively, compared with the predefined non-inferiority margin of ±0.2 mm. Measurements of MLD and RefD using QAngio XA showed no major systematic differences between versions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scanlon PJ, Faxon DP, Audet AM, Carabello B, Dehmer GJ, Eagle KA, Legako RD, Leon DF, Murray JA, Nissen SE, Pepine CJ, Watson RM, Ritchie JL, Gibbons RJ, Cheitlin MD, Gardner TJ, Garson A Jr, Russell RO Jr, Ryan TJ, Smith SC Jr (1999) ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol 33(6):1756–1824

    Article  CAS  PubMed  Google Scholar 

  2. Desmet W, De Scheerder I, Beatt K, Huehns T, Piessens J (1995) In vivo comparison of different quantitative edge detection systems used for measuring coronary arterial diameters. Cathet Cardiovasc Diagn 34(1):72–80; discussion 81

    Article  CAS  PubMed  Google Scholar 

  3. Gottsauner-Wolf M, Sochor H, Moertl D, Gwechenberger M, Stockenhuber F, Probst P (1996) Assessing coronary stenosis. Quantitative coronary angiography versus visual estimation from cine-film or pharmacological stress perfusion images. Eur Heart J 17(8):1167–1174

    Article  CAS  PubMed  Google Scholar 

  4. Hausleiter J, Nolte CW, Jost S, Wiese B, Sturm M, Lichtlen PR (1996) Comparison of different quantitative coronary analysis systems: ARTREK, CAAS, and CMS. Cathet Cardiovasc Diagn 37 (1):14–22; discussion 23. doi:10.1002/(sici)1097-0304(199601)37:1<14::aid-ccd5>3.0.co;2-7

    Article  CAS  PubMed  Google Scholar 

  5. Dietz U, Rupprecht HJ, Brennecke R, Fritsch HP, Woltmann J, Blankenberg S, Meyer J (1997) Comparison of QCA systems. Int J Card Imaging 13(4):271–280

    Article  CAS  PubMed  Google Scholar 

  6. Lansky AJ, Popma JJ, Cutlip D, Ho KK, Abizaid AS, Saucedo J, Zhang Y, Senerchia C, Kuntz RE, Leon MB, Baim DS (1999) Comparative analysis of early and late angiographic outcomes using two quantitative algorithms in the Balloon versus Optimal Atherectomy Trial (BOAT). Am J Cardiol 83(12):1611–1616

    Article  CAS  PubMed  Google Scholar 

  7. Keane D, Haase J, Slager CJ, Montauban van Swijndregt E, Lehmann KG, Ozaki Y, di Mario C, Kirkeeide R, Serruys PW (1995) Comparative validation of quantitative coronary angiography systems. Results and implications from a multicenter study using a standardized approach. Circulation 91(8):2174–2183

    Article  CAS  PubMed  Google Scholar 

  8. Kozuma K, Otsuka M, Ikari Y, Uehara Y, Yokoi H, Sano K, Tanabe K, Hibi K, Yamane M, Ishiwata S, Ohta H, Yamauchi Y, Suematsu N, Nakayama M, Inoue N, Kyono H, Suzuki N, Isshiki T (2015) Clinical and angiographic outcomes of paclitaxel-eluting coronary stent implantation in hemodialysis patients: a prospective multicenter registry: The OUCH-TL study (outcome in hemodialysis of TAXUS Liberte). J Cardiol 66(6):502–508. doi:10.1016/j.jjcc.2015.03.008

    Article  PubMed  Google Scholar 

  9. Ikari Y, Kyono H, Isshiki T, Ishizuka S, Nasu K, Sano K, Okada H, Sugano T, Uehara Y (2015) Usefulness of everolimus-eluting coronary stent implantation in patients on maintenance hemodialysis. Am J Cardiol 116(6):872–876. doi:10.1016/j.amjcard.2015.05.061

    Article  PubMed  Google Scholar 

  10. Ikari Y, Tanabe K, Koyama Y, Kozuma K, Sano K, Isshiki T, Katsuki T, Kimura K, Yamane M, Takahashi N, Hibi K, Hasegawa K, Ishiwata S, Kiyooka T, Yokoi H, Uehara Y, Hara K (2012) Sirolimus eluting coronary stent implantation in patients on maintenance hemodialysis: the OUCH study (outcome of cypher stent inhemodialysis patients). Circ J 76(8):1856–1863

    Article  CAS  PubMed  Google Scholar 

  11. Reiber JH, van der Zwet PM, Koning G, von Land CD, van Meurs B, Gerbrands JJ, Buis B, van Voorthuisen AE (1993) Accuracy and precision of quantitative digital coronary arteriography: observer-, short-, and medium-term variabilities. Cathet Cardiovasc Diagn 28(3):187–198

    Article  CAS  PubMed  Google Scholar 

  12. Serruys PW, Foley DP, De Feyter PJ (1994) Quantitative coronary angiography in clinical practice. Developments in cardiovascular medicine, vol 145. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  13. Nakamura M, Kotani J, Kozuma K, Uchida T, Iwabuchi M, Muramatsu T, Hirayama H, Fujii K, Saito S (2011) Effectiveness of paclitaxel-eluting stents in complex clinical patients—Insights from the TAXUS Japan Postmarket surveillance study. Circ J 75(11):2573–2580

    Article  CAS  PubMed  Google Scholar 

  14. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  CAS  PubMed  Google Scholar 

  15. Puricel S, Arroyo D, Corpataux N, Baeriswyl G, Lehmann S, Kallinikou Z, Muller O, Allard L, Stauffer JC, Togni M, Goy JJ, Cook S (2015) Comparison of everolimus- and biolimus-eluting coronary stents with everolimus-eluting bioresorbable vascular scaffolds. J Am Coll Cardiol 65(8):791–801. doi:10.1016/j.jacc.2014.12.017

    Article  CAS  PubMed  Google Scholar 

  16. Alfonso F, Perez-Vizcayno MJ, Cardenas A, Garcia Del Blanco B, Seidelberger B, Iniguez A, Gomez-Recio M, Masotti M, Velazquez MT, Sanchis J, Garcia-Touchard A, Zueco J, Bethencourt A, Melgares R, Cequier A, Dominguez A, Mainar V, Lopez-Minguez JR, Moreu J, Marti V, Moreno R, Jimenez-Quevedo P, Gonzalo N, Fernandez C, Macaya C (2014) A randomized comparison of drug-eluting balloon versus everolimus-eluting stent in patients with bare-metal stent-in-stent restenosis: the RIBS V Clinical Trial (Restenosis Intra-stent of Bare Metal Stents: paclitaxel-eluting balloon vs. everolimus-eluting stent). J Am Coll Cardiol 63(14):1378–1386. doi:10.1016/j.jacc.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  17. Park KW, Chae IH, Lim DS, Han KR, Yang HM, Lee HY, Kang HJ, Koo BK, Ahn T, Yoon JH, Jeong MH, Hong TJ, Chung WY, Jo SH, Choi YJ, Hur SH, Kwon HM, Jeon DW, Kim BO, Park SH, Lee NH, Jeon HK, Gwon HC, Jang YS, Kim HS (2011) Everolimus-eluting versus sirolimus-eluting stents in patients undergoing percutaneous coronary intervention: the EXCELLENT (Efficacy of Xience/Promus Versus Cypher to Reduce Late Loss After Stenting) randomized trial. J Am Coll Cardiol 58(18):1844–1854. doi:10.1016/j.jacc.2011.07.031

    Article  CAS  PubMed  Google Scholar 

  18. Kim WJ, Lee SW, Park SW, Kim YH, Yun SC, Lee JY, Park DW, Kang SJ, Lee CW, Lee JH, Choi SW, Seong IW, Lee BK, Lee NH, Cho YH, Shin WY, Lee SJ, Lee SW, Hyon MS, Bang DW, Park WJ, Kim HS, Chae JK, Lee K, Park HK, Park CB, Lee SG, Kim MK, Park KH, Choi YJ, Cheong SS, Yang TH, Jang JS, Her SH, Park SJ (2011) Randomized comparison of everolimus-eluting stent versus sirolimus-eluting stent implantation for de novo coronary artery disease in patients with diabetes mellitus (ESSENCE-DIABETES): results from the ESSENCE-DIABETES trial. Circulation 124(8):886–892. doi:10.1161/circulationaha.110.015453

    Article  CAS  PubMed  Google Scholar 

  19. Park KW, Yoon JH, Kim JS, Hahn JY, Cho YS, Chae IH, Gwon HC, Ahn T, Oh BH, Park JE, Shim WH, Shin EK, Jang YS, Kim HS (2009) Efficacy of Xience/promus versus Cypher in rEducing Late Loss after stENTing (EXCELLENT) trial: study design and rationale of a Korean multicenter prospective randomized trial. Am Heart J 157(5):811–817.e811. doi:10.1016/j.ahj.2009.02.008

    Article  PubMed  Google Scholar 

  20. Stone GW, Midei M, Newman W, Sanz M, Hermiller JB, Williams J, Farhat N, Mahaffey KW, Cutlip DE, Fitzgerald PJ, Sood P, Su X, Lansky AJ (2008) Comparison of an everolimus-eluting stent and a paclitaxel-eluting stent in patients with coronary artery disease: a randomized trial. Jama 299(16):1903–1913. doi:10.1001/jama.299.16.1903

    Article  CAS  PubMed  Google Scholar 

  21. Klein JL, Hoff J, Peifer J, Folks R, Cooke CD, King Iii S, Garcia E (1998) A quantitative evaluation of the three dimensional reconstruction of patients’ coronary arteries. Int J Card Imaging 14(2):75–87. doi:10.1023/A:1005903705300

    Article  CAS  PubMed  Google Scholar 

  22. Agostoni P, Biondi-Zoccai G, Van Langenhove G, Cornelis K, Vermeersch P, Convens C, Vassanelli C, Van Den Heuvel P, Van Den Branden F, Verheye S (2008) Comparison of assessment of native coronary arteries by standard versus three-dimensional coronary angiography. Am J Cardiol 102(3):272–279. doi:10.1016/j.amjcard.2008.03.048

    Article  PubMed  Google Scholar 

  23. Gradaus R, Mathies K, Breithardt G, Böcker D (2006) Clinical assessment of a new real time 3D quantitative coronary angiography system: evaluation in stented vessel segments. Cathet Cardiovasc Interv 68(1):44–49. doi:10.1002/ccd.20775

    Article  Google Scholar 

  24. Tuinenburg JC, Janssen JP, Kooistra R, Koning G, Corral MD, Lansky AJ, Reiber JH (2013) Clinical validation of the new T- and Y-shape models for the quantitative analysis of coronary bifurcations: an interobserver variability study. Cathet Cardiovasc Interv 81(6):E225–E236. doi:10.1002/ccd.24510

    Article  Google Scholar 

  25. Tuinenburg JC, Koning G, Rares A, Janssen JP, Lansky AJ, Reiber JH (2011) Dedicated bifurcation analysis: basic principles. Int J Cardiovasc Imaging 27(2):167–174. doi:10.1007/s10554-010-9795-9

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ishibashi Y, Grundeken MJ, Nakatani S, Iqbal J, Morel MA, Genereux P, Girasis C, Wentzel JJ, Garcia-Garcia HM, Onuma Y, Serruys PW (2015) In vitro validation and comparison of different software packages or algorithms for coronary bifurcation analysis using calibrated phantoms: implications for clinical practice and research of bifurcation stenting. Cathet Cardiovasc Interv 85(4):554–563. doi:10.1002/ccd.25618

    Article  Google Scholar 

  27. Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge

Download references

Acknowledgements

The authors thank Emiko Yano (Cardiocore Japan, Tokyo, Japan) for data coordination. The authors are grateful for analyses performed by Tomoko Yoshida and Michiko Hoshino (Cardiocore Japan, Tokyo, Japan). The funding source had no role in conducting the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayoko Kozuma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to disclose concerning this study.

Appendix: sample size calculation

Appendix: sample size calculation

We determined our sample size by using a random-intercept analysis-of-variance model to ascertain that the difference between the QAngio XA versions was negligible. The assumed model was

$${{Z}_{ij}}=\mu +{{\alpha }_{i}}+{{\beta }_{j}}+{{\varepsilon }_{ij}},$$
$${{\alpha }_{i}}\tilde{\ }N\left( 0,\sigma _{\alpha }^{2} \right)~~i.i.d.,{{\varepsilon }_{ij}}\tilde{\ }N\left( 0,\sigma _{\varepsilon }^{2} \right)~~i.i.d.,$$

where \({{Z}_{ij}}={{Y}_{ij2}}-{{Y}_{ij1}}\) is the difference between measurements of lesion \(i=1,\,2,\,\ldots \,,\,n\) read by two analysts \(~j=1,\,2\) with version 6.0 (\({{Y}_{ij1}}\)) and version 7.3 (\({{Y}_{ij2}}\)), respectively. We considered lesion effects \({{\alpha }_{i}}\) as random effects and rater effects \({{\beta }_{j}}\) as fixed effects for the measurement difference. In the model, the contrast \(~\mu +\frac{1}{2}\left( {{\beta }_{1}}+{{\beta }_{2}} \right)~\) represents the mean difference of the measured values between versions 6.0 and 7.3. We considered the two versions of QAngio XA to be equivalent if the 95% confidence interval (CI) of the contrast lay within a ±0.2 mm margin.

To calculate the sample size required to maintain a power of 0.9 in order to detect equivalence, we took the following steps [27]: (1) fitting the aforementioned model to the measured MLD values as \({{Y}_{ij,\text{ver}}}\) from the data obtained in the previous Vampire study [13], which enrolled patients receiving PCI in real-world clinical practice; (2) using \(\hat{\sigma }_{\alpha }^{2}\) and \(\hat{\sigma }_{\varepsilon }^{2}\) (fitted values) to calculate the sample size under \(\mu =0\) and \({{\beta }_{j}}=0\) as though there were no fixed effects; (3) calculating the final sample size by inflating the number in step 2 by (1 + ICC) [27], where ICC = \(\hat{\sigma }_{\alpha }^{2}/\hat{\sigma }_{\alpha }^{2}+\hat{\sigma }_{\varepsilon }^{2}\) is an estimated intraclass correlation coefficient of \({{Z}_{ij}}\). Step 1 gave the estimates ICC = 0.29, and SAS/GLMPOWER requires 56 values of \(\text{ }\!\!~\!\!\text{ }{{Z}_{ij}}\) in step 2. The resulting size was 73; that is, n = 37 patients. To ensure that the smallest subgroup (left anterior descending coronary artery lesions) provided meaningful results, at least 93 patients in total would be required in the study. Here, 100 patients were randomly sampled, presupposing more stringent conditions than those of the previous study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozuma, K., Kashiwabara, K., Shinozaki, T. et al. Two-by-two cross-over study to evaluate agreement between versions of a quantitative coronary analysis system (QAngio XA). Int J Cardiovasc Imaging 33, 779–787 (2017). https://doi.org/10.1007/s10554-017-1068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-017-1068-4

Keywords

Navigation