Skip to main content
Log in

Value of three-dimensional strain parameters for predicting left ventricular remodeling after ST-elevation myocardial infarction

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

This study was to evaluate the value of multi-directional strain parameters derived from three-dimensional (3D) speckle tracking echocardiography (STE) for predicting left ventricular (LV) remodeling after ST-elevation myocardial infarction (STEMI) treated with primary percutaneous coronary intervention (PCI) compared with that of two-dimensional (2D) global longitudinal strain (GLS). A total of 110 patients (mean age, 54 ± 9 years) after STEMI treated with primary PCI were enrolled in our study. At baseline (within 24 h after PCI), standard 2D echocardiography, 2D STE and 3D STE were performed to acquire the conventional echocardiographic parameters and strain parameters. At 3-month follow-up, standard 2D echocardiography was repeated to all the patients to determine LV remodeling, which was defined as a 20% increase in LV end-diastolic volume. At 3-month follow-up, LV remodeling occurred in 26 patients (24%). Compared with patients without LV remodeling, patients with remodeling had significantly reduced 2D GLS (−12.5 ± 3.2% vs −15.0 ± 3.1%, p < 0.001), 3D GLS (−9.9 ± 2.2% vs −13.1 ± 2.7%, p < 0.001), 3D global area strain (GAS) (−20.3 ± 3.9% vs −23.3 ± 4.8%, p = 0.005) and 3D global radial strain (GRS) (29.0 ± 7.4% vs 34.3 ± 8.5%, p = 0.007) at baseline, but there is no significant difference in 3D global circumferential strain (GCS) (−12.7 ± 2.9% vs −13.0 ± 3.2%, p = 0.822). Separated multivariate analysis shows that 2D GLS, 3D GLS, 3D GAS and 3D GRS all can be independent predictors of LV remodeling. However, receiver-operating characteristic curve analysis showed that the area under the curve of 3D GLS (0.82) for predicting LV remodeling was significantly higher than that of 2D GLS (0.72, p = 0.034), 3D GAS (0.68, p < 0.001) and 3D GRS (0.68, p < 0.001). In patients after STEMI, 2D GLS, 3D GLS, 3D GAS and 3D GRS but not 3D GCS measured after primary PCI are independent predictors of LV remodeling and 3D GLS is the most powerful predictor among them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shah RU, Henry TD, Rutten-Ramos S, Garberich RF, Tighiouart M, Merz CNB (2015) Increasing percutaneous coronary interventions for ST-segment elevation myocardial infarction in the United States: progress and opportunity. JACC Cardiovasc Interv 8(1_PB):139–146. doi:10.1016/j.jcin.2014.07.017

    Article  PubMed  Google Scholar 

  2. Dorsey SM, McGarvey JR, Wang H, Nikou A, Arama L, Koomalsingh KJ, Kondo N, Gorman JH, Pilla JJ, Gorman RC, Wenk JF, Burdick JA (2015) MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction. Biomaterials 69:65–75. doi:10.1016/j.biomaterials.2015.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sutton MGSJ, Sharpe N (2000) Left ventricular remodeling after myocardial infarction pathophysiology and therapy. Circulation 101(25):2981–2988

    Article  CAS  PubMed  Google Scholar 

  4. Vannan MA, Taylor DJ (1992) Ventricular remodelling after myocardial infarction. Br Heart J 68(3):257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. O’Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, de Lemos JA, Ettinger SM, Fang JC, Fesmire FM, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-Holland JE, Tommaso CL, Tracy CM, Woo YJ, Zhao DX (2013) 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction. J Am Coll Cardiol 61(4):e78–e140. doi:10.1016/j.jacc.2012.11.019

    Article  PubMed  Google Scholar 

  6. Altiok E, Tiemann S, Becker M, Koos R, Zwicker C, Schroeder J, Kraemer N, Schoth F, Adam D, Friedman Z, Marx N, Hoffmann R (2014) Myocardial deformation imaging by two-dimensional speckle-tracking echocardiography for prediction of global and segmental functional changes after acute myocardial infarction: a comparison with late gadolinium enhancement cardiac magnetic resonance. J Am Soc Echocardiog 27(3):249–257. doi:10.1016/j.echo.2013.11.014

    Article  Google Scholar 

  7. D’Andrea A, Cocchia R, Caso P, Riegler L, Scarafile R, Salerno G, Golia E, Di Salvo G, Calabrò P, Bigazzi MC, Liccardo B, Esposito N, Cuomo S, Bossone E, Russo MG, Calabrò R (2011) Global longitudinal speckle-tracking strain is predictive of left ventricular remodeling after coronary angioplasty in patients with recent non-st elevation myocardial infarction. Int J Cardiol 153(2):185–191. doi:10.1016/j.ijcard.2010.08.025

    Article  PubMed  Google Scholar 

  8. Bochenek T, Wita K, Tabor Z, Grabka M, Krzych Ł, Wróbel W, Berger-Kucza A, Elżbieciak M, Doruchowska A, Gluza MT (2011) Value of speckle-tracking echocardiography for prediction of left ventricular remodeling in patients with ST-elevation myocardial infarction treated by primary percutaneous intervention. J Am Soc Echocardiog 24(12):1342–1348. doi:10.1016/j.echo.2011.09.003

    Article  Google Scholar 

  9. Uematsu M (2015) Speckle tracking echocardiography - Quo Vadis?. Circ J 79(4):735–741. doi:10.1253/circj.CJ-15-0049

    Article  PubMed  Google Scholar 

  10. Altman M, Bergerot C, Aussoleil A, Davidsen ES, Sibellas F, Ovize M, Bonnefoy-Cudraz E, Thibault H, Derumeaux G (2014) Assessment of left ventricular systolic function by deformation imaging derived from speckle tracking: a comparison between 2D and 3D echo modalities. Eur Heart J Cardiovasc Imaging 15(3):316–323. doi:10.1093/ehjci/jet103

    Article  PubMed  Google Scholar 

  11. Hayat D, Kloeckner M, Nahum J, Ecochard-Dugelay E, Dubois-Randé J, Jean-François D, Guéret P, Lim P (2012) Comparison of real-time three-dimensional speckle tracking to magnetic resonance imaging in patients with coronary heart disease. Am J Cardiol 109(2):180–186. doi:10.1016/j.amjcard.2011.08.030

    Article  PubMed  Google Scholar 

  12. Luis SA, Yamada A, Khandheria BK, Speranza V, Benjamin A, Ischenko M, Platts DG, Hamilton-Craig CR, Haseler L, Burstow D, Chan J (2014) Use of three-dimensional speckle-tracking echocardiography for quantitative assessment of global left ventricular function: a comparative study to three-dimensional echocardiography. J Am Soc Echocardiog 27(3):285–291. doi:10.1016/j.echo.2013.11.002

    Article  Google Scholar 

  13. Jasaityte R, Heyde B, D Hooge J (2013) Current state of three-dimensional myocardial strain estimation using echocardiography. J Am Soc Echocardiog 26(1):15–28. doi:10.1016/j.echo.2012.10.005

    Article  Google Scholar 

  14. Bolognese L (2002) Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation 106(18):2351–2357. doi:10.1161/01.CIR.0000036014.90197.FA

    Article  PubMed  Google Scholar 

  15. Bolognese L (2004) Impact of microvascular dysfunction on left ventricular remodeling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction. Circulation 109(9):1121–1126. doi:10.1161/01.CIR.0000118496.44135.A7

    Article  PubMed  Google Scholar 

  16. Li F, Chen YG, Yao GH, Li L, Ge ZM, Zhang M, Zhang Y (2008) Usefulness of left ventricular conic index measured by real-time three-dimensional echocardiography to predict left ventricular remodeling after acute myocardial infarction. Am J Cardiol 102(11):1433–1437. doi:10.1016/j.amjcard.2008.07.034

    Article  PubMed  Google Scholar 

  17. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57(6):450–458

    Article  CAS  PubMed  Google Scholar 

  18. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt J (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiog 28(1):1–39. doi:10.1016/j.echo.2014.10.003

    Article  Google Scholar 

  19. Mondillo S, Galderisi M, Mele D, Cameli M, Lomoriello VS, Zacà V, Ballo P, D’Andrea A, Muraru D, Losi M (2011) Speckle-tracking echocardiography a new technique for assessing myocardial function. J Ultras Med 30(1):71–83

    Article  Google Scholar 

  20. Abate E, Hoogslag GE, Antoni ML, Nucifora G, Delgado V, Holman ER, Schalij MJ, Bax JJ, Marsan NA (2012) Value of three-dimensional speckle-tracking longitudinal strain for predicting improvement of left ventricular function after acute myocardial infarction. Am J Cardiol 110(7):961–967. doi:10.1016/j.amjcard.2012.05.023

    Article  PubMed  Google Scholar 

  21. Sun M, Kang Y, Cheng L, Pan C, Cao X, Yao H, Dong L, Shu X (2016) Global longitudinal strain is an independent predictor of cardiovascular events in patients with maintenance hemodialysis: a prospective study using three-dimensional speckle tracking echocardiography. Int J Cardiovasc Imaging 32(5):757–766. doi:10.1007/s10554-016-0836-x

    Article  PubMed  Google Scholar 

  22. Li X, Jin F, Jing C, Xiao Q, Liu Y, Ran Z, Zhang J (2012) Predictive value of left ventricular remodeling by area strain based on three-dimensional wall-motion tracking after pci in patients with recent NSTEMI. Ultrasound Med Biol 38(9):1491–1501. doi:10.1016/j.ultrasmedbio.2012.05.006

    Article  PubMed  Google Scholar 

  23. Farsalinos KE, Daraban AM, Ünlü S, Thomas JD, Badano LP, Voigt J (2015) Head-to-head comparison of global longitudinal strain measurements among nine different vendors. J Am Soc Echocardiog 28(10):1171–1181. doi:10.1016/j.echo.2015.06.011

    Article  Google Scholar 

  24. Langeland S (2005) Experimental validation of a new ultrasound method for the simultaneous assessment of radial and longitudinal myocardial deformation independent of insonation angle. Circulation 112(14):2157–2162. doi:10.1161/CIRCULATIONAHA.105.554006

    Article  PubMed  Google Scholar 

  25. Wang Q, Zhang C, Huang D, Zhang L, Yang F, An X, Ouyang Q, Zhang M, Wang S, Guo J, Ji D (2015) Evaluation of myocardial infarction size with three-dimensional speckle tracking echocardiography: a comparison with single photon emission computed tomography. Int J Cardiovasc Imaging 31(8):1571–1581. doi:10.1007/s10554-015-0745-4

    Article  PubMed  Google Scholar 

  26. Nagata Y, Takeuchi M, Wu CC, Izumo M, Suzuki K, Sato K, Seo Y, Akashi YJ, Aonuma K, Otsuji Y (2015) Prognostic value of LV deformation parameters using 2D and 3D speckle-tracking echocardiography in asymptomatic patients with severe aorticstenosis and preserved LV ejection fraction. JACC Cardiovasc Imaging 8(3):235–245. doi:10.1016/j.jcmg.2014.12.009

    Article  PubMed  Google Scholar 

  27. Zhu W, Liu W, Tong Y, Xiao J (2014) Three-dimensional speckle tracking echocardiography for the evaluation of the infarct size and segmental transmural involvement in patients with acute myocardial infarction. Echocardiography 31(1):58–66. doi:10.1111/echo.12284

    Article  PubMed  Google Scholar 

  28. Sjøli B, Ørn S, Grenne B, Ihlen H, Edvardsen T, Brunvand H (2009) Diagnostic capability and reproducibility of strain by doppler and by speckle tracking in patients with acute myocardial infarction. JACC Cardiovasc Imaging 2(1):24–33. doi:10.1016/j.jcmg.2008.10.007

    Article  PubMed  Google Scholar 

  29. Wen H, Liang Z, Zhao Y, Yang K (2011) Feasibility of detecting early left ventricular systolic dysfunction using global area strain: a novel index derived from three-dimensional speckle-tracking echocardiography. Eur J Echocardiogr 12(12):910–916. doi:10.1093/ejechocard/jer162

    Article  PubMed  Google Scholar 

  30. Seo Y, Ishizu T, Atsumi A, Kawamura R, Aonuma K (2014) Three-dimensional speckle tracking echocardiography. Circ J 78(6):1290–1301. doi:10.1253/circj.CJ-14-0360

    Article  PubMed  Google Scholar 

  31. Munk K, Andersen NH, Terkelsen CJ, Bibby BM, Johnsen SP, Bøtker HE, Nielsen TT, Poulsen SH (2012) Global left ventricular longitudinal systolic strain for early risk assessment in patients with acute myocardial infarction treated with primary percutaneous intervention. J Am Soc Echocardiog 25(6):644–651. doi:10.1016/j.echo.2012.02.003

    Article  Google Scholar 

  32. Møller JE, Hillis GS, Oh JK, Reeder GS, Gersh BJ, Pellikka PA (2006) Wall motion score index and ejection fraction for risk stratification after acute myocardial infarction. Am Heart J 151(2):419–425. doi:10.1016/j.ahj.2005.03.042

    Article  PubMed  Google Scholar 

  33. Lacalzada J, de la Rosa A, Izquierdo MM, Jiménez JJ, Iribarren JL, García-González MJ, López BM, Duque MA, Barragán A, Hernández C, Carrillo-Pérez M, Laynez I (2015) Left ventricular global longitudinal systolic strain predicts adverse remodeling and subsequent cardiac events in patients with acute myocardial infarction treated with primary percutaneous coronary intervention. Int J Cardiovasc Imaging 31(3):575–584. doi:10.1007/s10554-015-0593-2

    Article  PubMed  Google Scholar 

  34. Shih H, Lee B, Lee RJ, Boyle AJ (2011) The Aging heart and post-infarction left ventricular remodeling. J Am Coll Cardiol 57(1):9–17. doi:10.1016/j.jacc.2010.08.623

    Article  PubMed  Google Scholar 

  35. Carrabba N, Parodi G, Valenti R, Migliorini A, Antoniucci D (2009) Comparison of effects of primary coronary angioplasty on left ventricular remodeling and heart failure in patients <70 versus ≥70 years with acute myocardial infarction. Am J Cardiol 104(7):926–931. doi:10.1016/j.amjcard.2009.05.035

    Article  PubMed  Google Scholar 

  36. Villarreal FJ, Hong D, Omens J (1999) Nicotine-modified postinfarction left ventricular remodeling. Am J Physiol 276(3 Pt 2):H1103–H1106

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tarantini G, Razzolini R, Cacciavillani L, Bilato C, Sarais C, Corbetti F, Perazzolo Marra M, Napodano M, Ramondo A, Iliceto S (2006) Influence of transmurality, infarct size, and severe microvascular obstruction on left ventricular remodeling and function after primary coronary angioplasty. Am J Cardiol 98(8):1033–1040. doi:10.1016/j.amjcard.2006.05.022

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Science and Technology Planning Project of Guangdong Province (2013A022100036, 2014A020212257), the Shenzhen Innovation Funding (SGLH20150213143207911, JCYJ20151030151431727), and the National Key Research and Development Program of China (2016YFC1300302, 2016YFC1301702). We gratefully acknowledge the volunteers who participated in our study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Qiu or Heye Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Lin Xu and Xiaomin Huang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Huang, X., Ma, J. et al. Value of three-dimensional strain parameters for predicting left ventricular remodeling after ST-elevation myocardial infarction. Int J Cardiovasc Imaging 33, 663–673 (2017). https://doi.org/10.1007/s10554-016-1053-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-016-1053-3

Keywords

Navigation