Skip to main content


Log in

Multilayer longitudinal strain at rest may help to predict significant stenosis of the left anterior descending coronary artery in patients with suspected non-ST-elevation acute coronary syndrome

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript


Two-dimensional speckle tracking echocardiography (2D-STE) multilayer analysis of myocardial deformation is a non-invasive method that enables discrimination of transmural differences owing to myocardial ischemia or necrosis. We wished to ascertain if multilayer longitudinal strains at rest are associated with significant (≥70 %) stenosis of the left anterior descending coronary artery (LAD) in patients with suspected non-ST-elevation acute coronary syndrome (NSTE-ACS). Our cohort comprised 113 consecutive patients with suspected NSTE-ACS and preserved ejection fraction (EF). Using coronary angiography, we diagnosed 63 patients with significant stenosis of the LAD and 50 patients without significant coronary artery disease. Echocardiography was done ≤48 h before angiography. Multilayer longitudinal strains were assessed from the endocardium, mid-myocardium and epicardium by 2D-STE. Regional longitudinal strain in LAD territory (RLSLAD) was calculated as the mean peak systolic longitudinal strain of segments subtended by the LAD for all myocardial layers. Significant differences were observed in all strain parameters between the two groups. RLSLAD and global longitudinal strain in the endocardium showed higher accuracy than that in the mid-myocardium and epicardium, wall motion score index (WMSI), WMSI in LAD territory, and EF for detection of significant LAD stenosis (all P < 0.05), with areas under the receiver operating characteristic curve of 0.87 and 0.91, respectively. An endocardial RLSLAD cutoff of −23.52 % showed optimal sensitivity and specificity (88.9/80.0 %). In patients with suspected NSTE-ACS, multilayer longitudinal strain analysis at rest might enable prediction of significant LAD stenosis, and could help to identify patients requiring reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others


  1. Bassand JP, Hamm CW, Ardissino D et al. (2007) Guidelines for the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes. EUR HEART J 28:1598–1660

    Article  CAS  PubMed  Google Scholar 

  2. Levine GN, Bates ER, Blankenship JC et al (2011) ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J Am Coll Cardiol 58:e44–e122

    Article  PubMed  Google Scholar 

  3. Abbate A, Vetrovec G, Crea F (2010) Low diagnostic yield of elective coronary angiography. N Engl J Med 363:92–93

    Article  CAS  PubMed  Google Scholar 

  4. Montgomery DE, Puthumana JJ, Fox JM, Ogunyankin KO (2012) Global longitudinal strain aids the detection of non-obstructive coronary artery disease in the resting echocardiogram. Eur Heart J Cardiovasc Imaging 13:579–587

    Article  PubMed  Google Scholar 

  5. Choi JO, Cho SW, Song YB et al (2009) Longitudinal 2D strain at rest predicts the presence of left main and three vessel coronary artery disease in patients without regional wall motion abnormality. Eur J Echocardiogr 10:695–701

    Article  PubMed  Google Scholar 

  6. Nucifora G, Schuijf JD, Delgado V et al (2010) Incremental value of subclinical left ventricular systolic dysfunction for the identification of patients with obstructive coronary artery disease. Am Heart J 159:148–157

    Article  PubMed  Google Scholar 

  7. Biering-Sorensen T, Hoffmann S, Mogelvang R et al (2014) Myocardial strain analysis by 2-dimensional speckle tracking echocardiography improves diagnostics of coronary artery stenosis in stable angina pectoris. Circ Cardiovasc Imaging 7:58–65

    Article  PubMed  Google Scholar 

  8. Leitman M, Lysyansky P, Sidenko S et al (2004) Two-dimensional strain- a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 17:1021–1029

    Article  PubMed  Google Scholar 

  9. Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH (1981) Left ventricular fiber architecture in man. Br Heart J 45:248–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sabbah HN, Marzilli M, Stein PD (1981) The relative role of subendocardium and subepicardium in left ventricular mechanics. Am J Physiol 240:H920–H926

    CAS  PubMed  Google Scholar 

  11. Duncker DJ, Traverse JH, Ishibashi Y, Bache RJ (1999) Effect of NO on transmural distribution of blood flow in hypertrophied left ventricle during exercise. Am J Physiol 276:H1305–H1312

    CAS  PubMed  Google Scholar 

  12. Geer JC, Crago CA, Little WC, Gardner LL, Bishop SP (1980) Subendocardial ischemic myocardial lesions associated with severe coronary atherosclerosis. Am J Pathol 98:663–680

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Grenne B, Eek C, Sjoli B et al (2010) Changes of myocardial function in patients with non-ST-elevation acute coronary syndrome awaiting coronary angiography. Am J Cardiol 105:1212–1218

    Article  PubMed  Google Scholar 

  14. Sarvari SI, Haugaa KH, Zahid W et al (2013) Layer-specific quantification of myocardial deformation by strain echocardiography may reveal significant CAD in patients with non-ST-segment elevation acute coronary syndrome. JACC Cardiovasc Imaging 6:535–544

    Article  PubMed  Google Scholar 

  15. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16:233–270

    Article  PubMed  Google Scholar 

  16. Scanlon PJ, Faxon DP, Audet AM et al (1999) ACC/AHA guidelines for coronary angiography: executive summary and recommendations: a report of the american college of cardiology/american heart association task force on practice guidelines (committee on coronary angiography) developed in collaboration with the society for cardiac angiography and interventions. Circulation 99:2345–2357

    Article  CAS  PubMed  Google Scholar 

  17. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    Article  CAS  PubMed  Google Scholar 

  18. Hashimoto I, Li X, Hejmadi Bhat A, Jones M, Zetts AD, Sahn DJ (2003) Myocardial strain rate is a superior method for evaluation of left ventricular subendocardial function compared with tissue doppler imaging. J Am Coll Cardiol 42:1574–1583

    Article  PubMed  Google Scholar 

  19. Altiok E, Neize lM, Tiemann S et al (2012) Quantitative analysis of endocardial and epicardial left ventricular myocardial deformation-comparison of strain-encoded cardiac magnetic resonance imaging with two-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr 25:1179–1188

    Article  PubMed  Google Scholar 

  20. Adamu U, Schmitz F, Becker M, Kelm M, Hoffmann R (2009) Advanced speckle tracking echocardiography allowing a three-myocardial layer-specific analysis of deformation parameters. Eur J Echocardiogr 10:303–308

    Article  PubMed  Google Scholar 

  21. Leitman M, Lysiansky M, Lysyansky P et al (2010) Circumferential and longitudinal strain in 3 myocardial layers in normal subjects and in patients with regional left ventricular dysfunction. J Am Soc Echocardiogr 23:64–70

    Article  PubMed  Google Scholar 

  22. Reimer KA, Jennings RB (1979) The “wavefront phenomenon” of myocardial ischemic cell death. Ii. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644

    CAS  PubMed  Google Scholar 

  23. Kloner RA, Jennings RB (2001) Consequences of brief ischemia: stunning, preconditioning, and their clinical implications. Circulation 104:3158–3167

    Article  CAS  PubMed  Google Scholar 

  24. Wijns W, Vatner SF, Camici PG (1998) Hibernating myocardium. N Engl J Med 339:173–181

    Article  CAS  PubMed  Google Scholar 

  25. Gotte MJ, van Rossum AC, Twisk JWR, Kuijer JPA, Marcus JT, Visser CA (2001) Quantification of regional contractile function after infarction: strain analysis superior to wall thickening analysis in discriminating infarct from remote myocardium. J Am Coll Cardiol 37:808–817

    Article  CAS  PubMed  Google Scholar 

  26. Stankovic I, Putnikovic B, Cvjetan R et al (2015) Visual assessment vs. strain imaging for the detection of critical stenosis of the left anterior descending coronary artery in patients without a history of myocardial infarction. Eur Heart J Cardiovasc Imaging 16:402–409

    Article  PubMed  Google Scholar 

  27. Nahrendorf M, Hiller KH, Greiser A et al (2003) Chronic coronary artery stenosis induces impaired function of remote myocardium: MRI and spectroscopy study in rat. Am J Physiol Heart Circ Physiol 285:H2712–H2721

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jia-wei Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, J., Ren, M. et al. Multilayer longitudinal strain at rest may help to predict significant stenosis of the left anterior descending coronary artery in patients with suspected non-ST-elevation acute coronary syndrome. Int J Cardiovasc Imaging 32, 1675–1685 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: