Skip to main content

Advertisement

Log in

Right atrial emptying fraction non-invasively predicts mortality in pulmonary hypertension

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Right-sided heart failure is the most common cause of death in pulmonary hypertension (PH). Echocardiographic measurements of right atrial (RA) size are associated with worse outcome in PH, however the association between RA function and death in PH has not been well-described. 160 PH patients (World Health Organization groups 1–5) underwent cardiac magnetic resonance imaging (cMRI) and right heart catheterization (RHC) within 6 weeks of each other at a tertiary care academic medical center in the United States. We measured cMRI RA maximum and minimum volumes indexed to body surface area and calculated RA emptying fraction (RAEF). We evaluated the relationship between RAEF and clinical variables with death using Cox proportional hazard models. 57 deaths occurred during a median follow-up of 3.5 years (36 % died overall, 10 % per year). RAEF was directly correlated in univariate analyses with right ventricular (RV) ejection fraction, left ventricular (LV) ejection fraction, LV size, cardiac index, absence of tricuspid and pulmonic regurgitation, absence of pericardial effusion, estimated glomerular filtration rate, 6-minute walk distance, and pulmonary arterial oxygen saturation, whereas it was inversely correlated with death, BNP, heart rate, mean RA pressure, mean PA pressure, pulmonary and systemic vascular resistance, RV size, and RA size. Using multivariate analyses, RAEF had a robust inverse association with death after adjusting for measured risk factors (HR per 5 % change in RAEF: 0.83 [95 % CI 0.73–0.94], p = 0.003). In PH patients, decreased RAEF by cMRI is independently associated with worse survival after adjustment for other risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Strange G, Playford D, Stewart S, Deague JA, Nelson H, Kent A, Gabbay E (2012) Pulmonary hypertension: prevalence and mortality in the Armadale echocardiography cohort. Heart 98(24):1805–1811. doi:10.1136/heartjnl-2012-301992

    Article  PubMed  PubMed Central  Google Scholar 

  2. D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT, Levy PS, Pietra GG, Reid LM, Reeves JT, Rich S, Vreim CE, William GW, Wu M (1991) Survival in patients with primary pulmonary hypertension. Ann Intern Med 115(5):343–349. doi:10.7326/0003-4819-115-5-343

    Article  PubMed  Google Scholar 

  3. Badesch DB, McLaughlin VV, Delcroix M, Dario Vizza C, Olschewski H, Sitbon O, Barst RJ (2004) Prostanoid therapy for pulmonary arterial hypertension. J Am Coll Cardiol 12(Suppl S):56S–61S. doi:10.1016/j.jacc.2004.02.036

    Article  Google Scholar 

  4. Keogh AM, Mayer E, Benza RL, Corris P, Dartevelle PG, Frost AE, Kim NH, Lang IM, Pepke-Zaba J, Sandoval J (2009) Interventional and surgical modalities of treatment in pulmonary hypertension. J Am Coll Cardiol 54(1 Suppl):S67–S77. doi:10.1016/j.jacc.2009.04.016

    Article  PubMed  Google Scholar 

  5. Benza RL, Miller DP, Gomberg-Maitland M, Frantz RP, Foreman AJ, Coffey CS, Frost AE, Barst RJ, Badesch DB, Elliot CG, Liou TG, McGoon MD (2010) Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 122:164–172. doi:10.1161/CIRCULATIONAHA.109.898122

    Article  PubMed  Google Scholar 

  6. Haddad F, Spruijt OA, Denault AY, Mercier O, Brunner N, Furman D, Fadel E, Bogaard HJ, Schnittger I, Vrtovec B, Wu JC, de Jesus Perez V, Vonk-Noordegraaf A, Zamanian RT (2015) Right heart score for predicting outcome in idiopathic, familial, or drug- and toxin-associated pulmonary arterial hypertension. J Am Coll Cardiol Cardiovasc Imaging 8(6):627–638. doi:10.1016/j.jcmg.2014.12.029

    Article  Google Scholar 

  7. Haddad F, Doyle R, Murphy DJ, Hunt SA (2008) Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117(13):1717–1731. doi:10.1161/CIRCULATIONAHA.107.653584

    Article  PubMed  Google Scholar 

  8. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ (2008) Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117(11):1436–1448. doi:10.1161/CIRCULATIONAHA.107.653576

    Article  PubMed  Google Scholar 

  9. Champion HC, Michelakis ED, Hassoun PM (2009) Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation 120(11):992–1007. doi:10.1161/CIRCULATIONAHA.106.674028

    Article  PubMed  Google Scholar 

  10. Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF (2009) The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest 135(3):794–804. doi:10.1378/chest.08-0492

    Article  CAS  PubMed  Google Scholar 

  11. Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, Dupuis J, Long CS, Rubin LJ, Smart FW, Suzuki YJ, Gladwin M, Denholm EM, Gail DB, National Heart Lung and Blood Institute Working Group on Cellular and Molecular Mechanisms of Right Heart Failure (2006) Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute Working Group on Cellular and Molecular Mechanisms of Right Heart Failure. Circulation 114(17):1883–1891. doi:10.1161/CIRCULATIONAHA.106.632208

    Article  PubMed  Google Scholar 

  12. Filusch A, Giannitsis E, Katus HA, Meyer FJ (2010) High-sensitivity troponin T: a novel biomarker for prognosis and disease severity in patients with pulmonary arterial hypertension. Clin Sci 119:207–213. DOI:10.1042/CS20100014

    Article  CAS  PubMed  Google Scholar 

  13. Velez-Martinez M, Ayers C, Mishkin JD, Bartolome SB, Garcia CK, Torres F, Drazner MH, de Lemos JA, Turer AT, Chin KM (2013) Association of cardiac troponin I with disease severity and outcomes in patients with pulmonary hypertension. Am J Cardiol 111(12):1812–1817. doi:10.1016/j.amjcard.2013.02.036

    Article  CAS  PubMed  Google Scholar 

  14. Forfia P, Mathai S, Fisher M, Houston-Harris T, Hemnes AR, Champion HC, Girgis RE, Hassoun PM (2008) Hyponatremia predicts right heart failure and poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med 177:1364–1369. doi:10.1164/rccm.200712-1876OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heresi GA, Tang WHW, Aytekin M, Hammel J, Hazen SL, Dweik RA (2011) Sensitive cardiac troponin I predicts poor outcomes in pulmonary arterial hypertension. Eur Respir J 39:939–944. doi:10.1183/09031936.00067011

    Article  PubMed  Google Scholar 

  16. Miyamoto S, Nagaya N, Satoh T, Toru S, Kyotani S, Sakamaki F, Fujita M, Nakanishi N, Miyatake K (2000) Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension. Comparison with cardiopulmonary exercise testing. Am J Respir Crit Care Med 161:487–492. doi:10.1164/ajrccm.161.2.9906015

    Article  CAS  PubMed  Google Scholar 

  17. Nagaya N, Nishikimi T, Uematsu M, Satoh T, Kyotani S, Sakamaki F, Kakishita M, Fujushima K, Okano Y, Nakanishi N, Miyatake K, Kangawa K (2000) Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation 102:865–870. doi:10.1161/01.CIR.102.8.865

    Article  CAS  PubMed  Google Scholar 

  18. Provencher S, Herve P, Sitbon O, Humbert M, Simonneau G, Chemla D (2008) Changes in exercise haemodynamics during treatment in pulmonary arterial hypertension. Eur Respir J 32(2):393–398. doi:10.1183/09031936.00009008

    Article  CAS  PubMed  Google Scholar 

  19. Shah SJ, Thenappan T, Rich S, Tian L, Archer SL, Gomberg-Maitland M (2008) Association of serum creatinine with abnormal hemodynamics and mortality in pulmonary arterial hypertension. Circulation 117:2475–2483. doi:10.1161/CIRCULATIONAHA.107.719500

    Article  CAS  PubMed  Google Scholar 

  20. Forfia PR, Fisher MR, Mathai SC, Housten-Harris T, Hemnes AR, Borlaug BA, Chamera E, Corretti MC, Champion HC, Abraham TP, Girgis RE, Hassoun PM (2006) Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med 174:1034–1041. doi:10.1164/rccm.200604-547OC

    Article  PubMed  Google Scholar 

  21. Ghio S, Klersy C, Magrini G, D’Armini AM, Seelsi L, Raineri C, Pasotti M, Serio A, Campana C, Vigano M (2010) Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol 140:272–278. doi:10.1016/j.ijcard.2008.11.051

    Article  PubMed  Google Scholar 

  22. Ghio S, Pazzano AS, Klersy C, Scelsi L, Raineri C, Camporotondo R, D’Armini A, Visconti LO (2011) Clinical and prognostic relevance of echocardiographic assessment of right ventricular geometry in patients with idiopathic pulmonary arterial hypertension. Am J Cardiol 107:628–632. doi:10.1016/j.amjcard.2010.10.027

    Article  PubMed  Google Scholar 

  23. Sachdev A, Villarraga HR, Frantz RP, McGoon MD, Hsiao J-F, Maalouf JF, Ammash NM, McCully RB, Miller FA, Pellikka PA, Oh JK, Kane GC (2011) Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest 139:1299–1309. doi:10.1378/chest.10-2015

    Article  PubMed  Google Scholar 

  24. Vonk MC, Sander MH, van den Hoogen FHJ, van Riel PLCM, Verheugt FWA, van Dijk APJ (2007) Right ventricle Tei-Index: a tool to increase the accuracy of non-invasive detection of pulmonary arterial hypertension in connective diseases. Eur J Echocardiogr 8:317–321. doi:10.1016/j.euje.2006.06.002

    Article  CAS  PubMed  Google Scholar 

  25. Dell’Italia LJ (2012) Anatomy and physiology of the right ventricle. Cardiol Clin 30(2):167–187. doi:10.1016/j.ccl.2012.03.009

    Article  PubMed  Google Scholar 

  26. Sanz J, Conroy J, Narula J (2012) Imaging of the right ventricle. Cardiol Clin 30:189–203. doi:10.1016/j.ccl.2012.03.001

    Article  PubMed  Google Scholar 

  27. van Wolferen SA, Johannes MT, Boonstra A, Marques KMJ, Bronzwaer JGF, Spreeuwenberg MD, Postmus PE, Vonk-Noordegraf A (2007) Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 28:1250–1257. doi:10.1093/eurheartj/ehl477

    Article  PubMed  Google Scholar 

  28. Hagger D, Condliffe R, Woodhouse N, Elliot CA, Armstrong IJ, Davies C, Hill C, Akil M, Wild JM, Kiely DG (2009) Ventricular mass index correlates with pulmonary artery pressure and predicts survival in suspected systemic sclerosis-associated pulmonary arterial hypertension. Rheumatology 48:1137–1142. doi:10.1093/rheumatology/kep187

    Article  PubMed  Google Scholar 

  29. van de Veerdonk MC, Kind T, Marcus JT, Mauritz G-J, Heymans MW, Bogaard H-J, Boonstra A, Marques KMJ, Westerhof N, Vonk-Noordegraf A (2011) Progressive right ventricuular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol 58(24):2511–2519. doi:10.1016/j.jacc.2011.06.068

    Article  PubMed  Google Scholar 

  30. Vonk Noordegraaf A, Gallè N (2011) The role of the right ventricle in pulmonary arterial hypertension. Eur Respir Rev 20(122):243–253. doi:10.1183/09059180.00006511

    Article  CAS  PubMed  Google Scholar 

  31. Mauritz G-J, Kind T, Marcus JT, Bogaard HJ, van de Veerdonk MC, Postmus PE, Boonstra A, Westerhof N, vonk Noordegraaf A (2012) Progressive changes in right ventricular geometric shortening and long-term survival in pulmonary arterial hypertension. Chest 141(4):935–943. doi:10.1378/chest.10-3277

    Article  PubMed  Google Scholar 

  32. Raymond RJ, Hinkerliter AL, Willis PW, Ralph D, Caldwell EJ, Willliam W, Ettinger NA, Hill NS, Summer WR, de Boisblanc B, Schwartz T, Koch G, Clayton LM, Jobsis MM, Crow JW, Long W (2002) Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol 24(7):1214–1219. doi:10.1016/S0735-1097(02)01744-8

    Article  Google Scholar 

  33. Brunner NW, Haddad F, Kobayashi Y, Hsi A, Swiston JR, Gin KG, Zamanian RT (2015) Prognostic utility of right atrial emptying fractions in pulmonary arterial hypertension. Pulm Circulation 5(3):473–480. doi:10.1086/682218

    Article  CAS  Google Scholar 

  34. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Krishna Kumar R, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62 (25 Suppl):D34–D41. doi:10.1016/j.jacc.2013.10.029

    Article  PubMed  Google Scholar 

  35. Maceira AM, Cosin-Sales J, Roughton M, Prasad SK, Pennell DJ (2013) Reference right atrial dimensions and volume estimation by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 15:29. doi:10.1186/1532-429X-15-29

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chung AK, Das SR, Leonard D, Peshock RM, Kazi F, Abdullah SM, Canham RM, Levine BD, Drazner MH (2006) Women have higher left ventricular ejection fractions than men independent of differences in left ventricular volume: the Dallas Heart Study. Circulation 113(12):1597–1604. doi:10.1161/CIRCULATIONAHA.105.574400

    Article  PubMed  Google Scholar 

  37. Muller H, Burri H, Lerch R (2008) Evaluation of right atrial size in patients with atrial arrhythmias: comparison of 2D versus real time 3D echocardiography. Echocardiography 25(6):617–623. doi:10.1111/j.1540-8175.2008.00674.x

    Article  PubMed  Google Scholar 

Download references

Author contribution

All authors contributed intellectually to this article. M.D., K.D., and S.M. primarily interpreted data and wrote the article. K.D., W.C., and S.M. contributed most to data collection. K.D. and C.A. contributed most to statistical analysis. K.C., F.T., and S.M. contributed most to initial study design. All authors have approved the final article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Matulevicius.

Ethics declarations

Conflict of interest

M.D., K.D., W.C.: None. K.C.: Research grants from Actelion, Bayer, Geon, Gilead, GlaxoSmithKline, NIH, Novartis, United Therapeutics; honoraria from Actelion, Bayer, Gilead. F.T.: Research grants from Akaria, Bayer, Geon, Gilead, Medtronic; consultant/advisory board with Actelion, Bayer, Gilead, LungLLC, Novartis, United Therapeutics. S.M.: Research grants from ACC/GE Healthcare Career Development Award, National Center for Advancing Translational Sciences, NIH, UT-STAR.

Ethical approval

All procedures involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of retrospective study formal consent is not required.

Additional information

Konstadina Darsaklis and Matthew E. Dickson have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darsaklis, K., Dickson, M.E., Cornwell, W. et al. Right atrial emptying fraction non-invasively predicts mortality in pulmonary hypertension. Int J Cardiovasc Imaging 32, 1121–1130 (2016). https://doi.org/10.1007/s10554-016-0883-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-016-0883-3

Keywords

Navigation