Skip to main content
Log in

Fibrosis assessment by integrated backscatter and its relationship with longitudinal deformation and diastolic function in heart failure with preserved ejection fraction

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Myocardial reflectivity, as assessed by calibrated integrated backscatter (cIB) analysis, is a non-invasive surrogate for the amount of left ventricular (LV) fibrosis. The aim of this study was to assess the myocardial reflectivity pattern in patients with heart failure and preserved ejection fraction (HFpEF), and to evaluate its relationship with longitudinal systolic deformation of LV by 2D-speckle tracking echocardiography, and degree of diastolic dysfunction. Transthoracic echocardiography, myocardial Doppler-derived systolic (Sm) and early diastolic velocity (E′), global longitudinal strain (GLS), and tissue characterization by cIB, were obtained in 86 subjects, 46 with HFpEF, and 40 controls. GLS was significantly impaired in HFpEF patients (−15.4 ± 3.5 % vs −21.5 ± 2.9 % in controls; P < 0.0001). Increased myocardial reflectivity, as evidenced by less negative values of cIB, was also found in HFpEF compared to controls (−21.2 ± 4.4 dB vs −25.3 ± 3.9 dB, P < 0.0001). In HFpEF patients, myocardial reflectivity was positively related to GLS (r = 0.68, P < 0.0001), E/E′ ratio (r = 0.38, P = 0.009), and Tau (r = 0.43, P = 0.002), and inversely related to E′ velocity (r = −0.46, P = 0.0012). These associations remained significant after adjustment for age, preload and afterload indices. Patients with HFpEF show changes of LV structure consistent with enhanced fibrosis—as evidenced by increased myocardial reflectivity- which parallel the degree of diastolic dysfunction, and of longitudinal systolic dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Komajda M, Lam CS (2014) Heart failure with preserved ejection fraction: a clinical dilemma. Eur Heart J 35(16):1022–1032. doi:10.1093/eurheartj/ehu067

    Article  CAS  PubMed  Google Scholar 

  2. Kraigher-Krainer E, Shah AM, Gupta DK, Santos A, Claggett B, Pieske B, Zile MR, Voors AA, Lefkowitz MP, Packer M, McMurray JJ, Solomon SD, PARAMOUNT Investigators (2014) Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol 63(5):447–456. doi:10.1016/j.jacc.2013.09.052

    Article  PubMed  Google Scholar 

  3. Martos R, Baugh J, Ledwidge M, O’Loughlin C, Conlon C, Patle A, Donnelly SC, McDonald K (2007) Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation 115(7):888–895. doi:10.1161/CIRCULATIONAHA.106.638569

    Article  PubMed  Google Scholar 

  4. Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62(4):263–271. doi:10.1016/j.jacc.2013.02.092

    Article  PubMed  Google Scholar 

  5. Senni M, Paulus WJ, Gavazzi A, Fraser AG, Diez J, Solomon SD, Smiseth OA, Guazzi M, Lam CS, Maggioni AP, Tschope C, Metra M, Hummel SL, Edelmann F, Ambrosio G, Stewart Coats AJ, Filippatos GS, Gheorghiade M, Anker SD, Levy D, Pfeffer MA, Stough WG, Pieske BM (2014) New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes. Eur Heart J 35(40):2797–2815. doi:10.1093/eurheartj/ehu204

    Article  PubMed  PubMed Central  Google Scholar 

  6. Su MY, Lin LY, Tseng YH, Chang CC, Wu CK, Lin JL, Tseng WY (2014) CMR-verified diffuse myocardial fibrosis is associated with diastolic dysfunction in HFpEF. JACC Cardiovasc Imaging 7(10):991–997. doi:10.1016/j.jcmg.2014.04.022

    Article  PubMed  Google Scholar 

  7. Westermann D, Kasner M, Steendijk P, Spillmann F, Riad A, Weitmann K, Hoffmann W, Poller W, Pauschinger M, Schultheiss HP, Tschope C (2008) Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation 117(16):2051–2060. doi:10.1161/CIRCULATIONAHA.107.716886

    Article  PubMed  Google Scholar 

  8. Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure—abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350(19):1953–1959. doi:10.1056/NEJMoa032566

    Article  CAS  PubMed  Google Scholar 

  9. Borbély A, van der Velden J, Papp Z, Bronzwaer JGF, Édes I, Stienen GJM, Paulus WJ (2005) Cardiomyocyte stiffness in diastolic heart failure. Circulation 111(6):774–781. doi:10.1161/01.CIR.0000155257.33485.6D

    Article  PubMed  Google Scholar 

  10. Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM (2010) Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Failure 3 (5):588–595. doi:10.1161/CIRCHEARTFAILURE.109.930701

    Article  PubMed  Google Scholar 

  11. Iles L, Pfluger H, Phrommintikul A, Cherayath J, Aksit P, Gupta SN, Kaye DM, Taylor AJ (2008) Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 52(19):1574–1580. doi:10.1016/j.jacc.2008.06.049

    Article  PubMed  Google Scholar 

  12. Querejeta R, Lopez B, Gonzalez A, Sanchez E, Larman M, Martinez Ubago JL, Diez J (2004) Increased collagen type I synthesis in patients with heart failure of hypertensive origin: relation to myocardial fibrosis. Circulation 110(10):1263–1268. doi:10.1161/01.CIR.0000140973.60992.9A

    Article  CAS  PubMed  Google Scholar 

  13. Kasner M, Westermann D, Lopez B, Gaub R, Escher F, Kuhl U, Schultheiss HP, Tschope C (2011) Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction. J Am Coll Cardiol 57(8):977–985. doi:10.1016/j.jacc.2010.10.024

    Article  CAS  PubMed  Google Scholar 

  14. Moreo A, Ambrosio G, De Chiara B, Tran T, Raman SV (2013) Influence of midwall fibrosis on diastolic dysfunction in non-ischemic cardiomyopathy. Int J Cardiol 163(3):342–344. doi:10.1016/j.ijcard.2012.09.104

    Article  PubMed  Google Scholar 

  15. Carluccio E, Biagioli P, Alunni G, Murrone A, Leonelli V, Pantano P, Biscottini E, Paulus WJ, Ambrosio G (2011) Advantages of deformation indices over systolic velocities in assessment of longitudinal systolic function in patients with heart failure and normal ejection fraction. Eur J Heart Fail 13(3):292–302. doi:10.1093/eurjhf/hfq203

    Article  PubMed  Google Scholar 

  16. Wang J, Khoury DS, Yue Y, Torre-Amione G, Nagueh SF (2008) Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. Eur Heart J 29(10):1283–1289. doi:10.1093/eurheartj/ehn141

    Article  CAS  PubMed  Google Scholar 

  17. Tan YT, Wenzelburger F, Lee E, Heatlie G, Leyva F, Patel K, Frenneaux M, Sanderson JE (2009) The pathophysiology of heart failure with normal ejection fraction: exercise echocardiography reveals complex abnormalities of both systolic and diastolic ventricular function involving torsion, untwist, and longitudinal motion. J Am Coll Cardiol 54(1):36–46. doi:10.1016/j.jacc.2009.03.037

    Article  PubMed  Google Scholar 

  18. Borlaug BA, Lam CS, Roger VL, Rodeheffer RJ, Redfield MM (2009) Contractility and ventricular systolic stiffening in hypertensive heart disease insights into the pathogenesis of heart failure with preserved ejection fraction. J Am Coll Cardiol 54(5):410–418. doi:10.1016/j.jacc.2009.05.013

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, Galderisi M, Marwick T, Nagueh SF, Sengupta PP, Sicari R, Smiseth OA, Smulevitz B, Takeuchi M, Thomas JD, Vannan M, Voigt JU, Zamorano JL (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr 12(3):167–205. doi:10.1093/ejechocard/jer021

    Article  PubMed  Google Scholar 

  20. Picano E, Pelosi G, Marzilli M, Lattanzi F, Benassi A, Landini L, L’Abbate A (1990) In vivo quantitative ultrasonic evaluation of myocardial fibrosis in humans. Circulation 81(1):58–64

    Article  CAS  PubMed  Google Scholar 

  21. Masuyama T, Nellessen U, Schnittger I, Tye TL, Haskell WL, Popp RL (1989) Ultrasonic tissue characterization with a real time integrated backscatter imaging system in normal and aging human hearts. J Am Coll Cardiol 14(7):1702–1708

    Article  CAS  PubMed  Google Scholar 

  22. Kosmala W, Przewlocka-Kosmala M, Wojnalowicz A, Mysiak A, Marwick TH (2012) Integrated backscatter as a fibrosis marker in the metabolic syndrome: association with biochemical evidence of fibrosis and left ventricular dysfunction. Eur Heart J Cardiovasc Imaging 13(6):459–467. doi:10.1093/ejechocard/jer291

    Article  PubMed  Google Scholar 

  23. Bertini M, Delgado V, Den Uijl DW, Nucifora G, Ng AC, Van Bommel RJ, Borleffs CJW, Boriani G, Schalij MJ, Bax JJ (2010) Prediction of cardiac resynchronization therapy response: value of calibrated integrated backscatter imaging. Circ Cardiovasc Imaging 3(1):86–93. doi:10.1161/CIRCIMAGING.109.882324

    Article  PubMed  Google Scholar 

  24. Maceira AM, Barba J, Varo N, Beloqui O, Diez J (2002) Ultrasonic backscatter and serum marker of cardiac fibrosis in hypertensives. Hypertension 39(4):923–928

    Article  CAS  PubMed  Google Scholar 

  25. Wong CY, O’Moore-Sullivan T, Leano R, Byrne N, Beller E, Marwick TH (2004) Alterations of left ventricular myocardial characteristics associated with obesity. Circulation 110(19):3081–3087. doi:10.1161/01.CIR.0000147184.13872.0F

    Article  PubMed  Google Scholar 

  26. Jellis C, Wright J, Kennedy D, Sacre J, Jenkins C, Haluska B, Martin J, Fenwick J, Marwick TH (2011) Association of imaging markers of myocardial fibrosis with metabolic and functional disturbances in early diabetic cardiomyopathy. Circ Cardiovasc Imaging 4(6):693–702. doi:10.1161/CIRCIMAGING.111.963587

    Article  PubMed  Google Scholar 

  27. Paulus WJ, Tschope C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, Marino P, Smiseth OA, De Keulenaer G, Leite-Moreira AF, Borbely A, Edes I, Handoko ML, Heymans S, Pezzali N, Pieske B, Dickstein K, Fraser AG, Brutsaert DL (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 28(20):2539–2550. doi:10.1093/eurheartj/ehm037

    Article  PubMed  Google Scholar 

  28. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28(1):1–39:e14. doi:10.1016/j.echo.2014.10.003

    Google Scholar 

  29. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelista A (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 22(2):107–133. doi:10.1016/j.echo.2008.11.023

    Article  PubMed  Google Scholar 

  30. Gaasch WH, Zile MR, Hoshino PK, Apstein CS, Blaustein AS (1989) Stress-shortening relations and myocardial blood flow in compensated and failing canine hearts with pressure-overload hypertrophy. Circulation 79(4):872–883

    Article  CAS  PubMed  Google Scholar 

  31. Scalia GM, Greenberg NL, McCarthy PM, Thomas JD, Vandervoort PM (1997) Noninvasive assessment of the ventricular relaxation time constant (tau) in humans by Doppler echocardiography. Circulation 95(1):151–155

    Article  CAS  PubMed  Google Scholar 

  32. Nagueh SF (2009) Echocardiographic assessment of left ventricular relaxation and cardiac filling pressures. Curr Heart Fail Rep 6(3):154–159

    Article  PubMed  Google Scholar 

  33. Marino P, Little WC, Rossi A, Barbieri E, Anselmi M, Destro G, Prioli A, Lanzoni L, Zardini P (2002) Can left ventricular diastolic stiffness be measured noninvasively? J Am Soc Echocardiogr 15(9):935–943

    Article  PubMed  Google Scholar 

  34. Perez JE, Barzilai B, Madaras EI, Glueck RM, Saffitz JE, Johnston P, Miller JG, Sobel BE (1984) Applicability of ultrasonic tissue characterization for longitudinal assessment and differentiation of calcification and fibrosis in cardiomyopathy. J Am Coll Cardiol 4(1):88–95

    Article  CAS  PubMed  Google Scholar 

  35. Heng MK, Janz RF, Jobin J (1985) Estimation of regional stress in the left ventricular septum and free wall: an echocardiographic study suggesting a mechanism for asymmetric septal hypertrophy. Am Heart J 110(1 Pt 1):84–90

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Performed in part within the European Union FP-VII Project “MEDIA—Metabolic Road to Diastolic Heart Failure”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erberto Carluccio.

Ethics declarations

Conflict of interest

None of the authors has conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carluccio, E., Biagioli, P., Zuchi, C. et al. Fibrosis assessment by integrated backscatter and its relationship with longitudinal deformation and diastolic function in heart failure with preserved ejection fraction. Int J Cardiovasc Imaging 32, 1071–1080 (2016). https://doi.org/10.1007/s10554-016-0881-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-016-0881-5

Keywords

Navigation