Skip to main content
Log in

Cardiac time intervals and the association with 2D-speckle-tracking, tissue Doppler and conventional echocardiography: the Thousand&1 Study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Cardiac time intervals (CTI) are prognostic above and beyond conventional echocardiographic measures. The explanation may be that CTI contain information about both systolic and diastolic measures; this is, however, unknown. The relationship between the CTI and systolic and diastolic function assessed by conventional, tissue Doppler (TDI) and speckle-tracking echocardiography (STE) was investigated. CTI and echocardiographic measurements, including conventional, STE, and TDI echocardiography, were studied in 1088 type 1 diabetes patients without known heart disease randomly selected from the out-patient clinic at Steno Diabetes Center. The CTI were obtained by TDI M-mode through the mitral leaflet and included the isovolumic relaxation time (IVRT), isovolumic contraction time (IVCT), and the myocardial performance index (MPI = (IVRT + IVCT)/ejection time). Standardized beta-values were assessed. Both systolic and diastolic measures associated with CTI. Conventional measures: left ventricular ejection fraction (stand. beta): MPI −0.34, IVRT 0.24, and IVCT −0.21, all p < 0.001. For the TDI measures, the most significant association was found with e′: MPI (stand. beta: −0.30, p < 0.001) and IVRT (−0.35, p < 0.001) but no association with IVCT −0.05, p = 0.1). Speckle-tracking derived measures were in general strongly associated with the cardiac time intervals. Thus, global longitudinal strain and MPI (−0.38, p < 0.001), IVRT (−0.23, p < 0.001), and IVCT (−0.10, p < 0.001); and global longitudinal strain rate e and MPI (−0.40, p < 0.001), IVRT (−0.42, p < 0.001), and IVCT (−0.04, p = 0.11). CTI, in particular MPI and IVRT, associate with both systolic and diastolic myocardial function assessed by conventional and newer echocardiographic measures. This may possibly help to explain the prognostic significance of CTI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Garrod AH (1874) On some points connected with circulation of the blood arrived at from a study of the sphygmograph. Proc R Soc Lond 23:140

    Article  Google Scholar 

  2. Bowen WP (1904) Changes in heart rate, blood pressure and duration of systole from bicycling. Am J Physiol 11:59

    Google Scholar 

  3. Lombard WP, Cope OM (1926) Duration of the systole of the left ventricle of man. Am J Physiol 77:263

    Google Scholar 

  4. Katz LN, Feil HS (1923) Clinicalobservations on the dynamics of ventricular systole: I. Auricular fibrillation. Arch Intern Med 32:672

    Article  Google Scholar 

  5. Weissler AM, Harris WS, Schoenfeld CD (1968) Systolic time intervals in heart failure in man. Circulation 37:149–159

    Article  CAS  PubMed  Google Scholar 

  6. Mancini GB, Costello D, Bhargava V et al (1982) The isovolumic index: a new noninvasive approach to the assessment of left ventricular function in man. Am J Cardiol 50:1401–1408

    Article  CAS  PubMed  Google Scholar 

  7. Tei C (1995) New non-invasive index for combined systolic and diastolic ventricular function. J Cardiol 26:135–136

    CAS  PubMed  Google Scholar 

  8. Tei C, Dujardin KS, Hodge DO et al (1996) Doppler index combining systolic and diastolic myocardial performance: clinical value in cardiac amyloidosis. J Am Coll Cardiol 28:658–664

    Article  CAS  PubMed  Google Scholar 

  9. Tei C, Ling LH, Hodge DO et al (1995) New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function—a study in normals and dilated cardiomyopathy. J Cardiol 26:357–366

    CAS  PubMed  Google Scholar 

  10. Tekten T, Onbasili AO, Ceyhan C et al (2003) Novel approach to measure myocardial performance index: pulsed-wave tissue Doppler echocardiography. Echocardiogry 20:503–510

    Article  Google Scholar 

  11. Tekten T, Onbasili AO, Ceyhan C et al (2003) Value of measuring myocardial performance index by tissue Doppler echocardiography in normal and diseased heart. Jpn Heart J 44:403–416

    Article  PubMed  Google Scholar 

  12. Harada K, Tamura M, Toyono M et al (2001) Assessment of global left ventricular function by tissue Doppler imaging. Am J Cardiol 88(927–932):A9

    Google Scholar 

  13. Voigt J-U, Lindenmeier G, Exner B et al (2003) Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 16:415–423

    Article  Google Scholar 

  14. Kjaergaard J, Hassager C, Oh JK et al (2005) Measurement of cardiac time intervals by Doppler tissue M-mode imaging of the anterior mitral leaflet. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 18:1058–1065. doi:10.1016/j.echo.2005.03.043

    Article  Google Scholar 

  15. Biering-Sørensen T, Mogelvang R, Pedersen S et al (2011) Usefulness of the myocardial performance index determined by tissue Doppler imaging m-mode for predicting mortality in the general population. Am J Cardiol 107:478–483. doi:10.1016/j.amjcard.2010.09.044

    Article  PubMed  Google Scholar 

  16. Biering-Sørensen T, Mogelvang R, Jensen JS (2015) Prognostic value of cardiac time intervals measured by tissue Doppler imaging M-mode in the general population. Heart Br Card Soc 101:954–960. doi:10.1136/heartjnl-2014-307137

    Google Scholar 

  17. Biering-Sørensen T, Mogelvang R, Søgaard P et al (2013) Prognostic value of cardiac time intervals by tissue Doppler imaging M-mode in patients with acute ST-segment-elevation myocardial infarction treated with primary percutaneous coronary intervention. Circ Cardiovasc Imaging 6:457–465. doi:10.1161/CIRCIMAGING.112.000230

    Article  PubMed  Google Scholar 

  18. Jensen MT, Sogaard P, Andersen HU et al (2015) Global longitudinal strain is not impaired in type 1 diabetes patients without albuminuria. JACC Cardiovasc Imaging 8:400–410. doi:10.1016/j.jcmg.2014.12.020

    Article  PubMed  Google Scholar 

  19. Jensen MT, Sogaard P, Andersen HU et al (2014) Prevalence of systolic and diastolic dysfunction in patients with type 1 diabetes without known heart disease: the Thousand & 1 Study. Diabetologia 57:672–680. doi:10.1007/s00125-014-3164-5

    Article  CAS  PubMed  Google Scholar 

  20. Lang RM, Bierig M, Devereux RB et al (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463. doi:10.1016/j.echo.2005.10.005

    Article  PubMed  Google Scholar 

  21. Nagueh SF, Appleton CP, Gillebert TC et al (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10:165–193. doi:10.1093/ejechocard/jep007

    Article  PubMed  Google Scholar 

  22. Kasner M, Westermann D, Steendijk P et al (2007) Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study. Circulation 116:637–647. doi:10.1161/CIRCULATIONAHA.106.661983

    Article  PubMed  Google Scholar 

  23. Gaibazzi N, Petrucci N, Ziacchi V (2005) Left ventricle myocardial performance index derived either by conventional method or mitral annulus tissue-Doppler: a comparison study in healthy subjects and subjects with heart failure. J Am Soc Echocardiogr 18:1270–1276. doi:10.1016/j.echo.2005.06.006

    Article  PubMed  Google Scholar 

  24. Duzenli MA, Ozdemir K, Aygul N et al (2009) Comparison of myocardial performance index obtained either by conventional echocardiography or tissue Doppler echocardiography in healthy subjects and patients with heart failure. Heart Vessels 24:8–15. doi:10.1007/s00380-008-1069-2

    Article  PubMed  Google Scholar 

  25. Bruch C, Schmermund A, Marin D et al (2000) Tei-index in patients with mild-to-moderate congestive heart failure. Eur Heart J 21:1888–1895. doi:10.1053/euhj.2000.2246

    Article  CAS  PubMed  Google Scholar 

  26. Carluccio E, Biagioli P, Alunni G et al (2012) Improvement of myocardial performance (Tei) index closely reflects intrinsic improvement of cardiac function: assessment in revascularized hibernating myocardium. Echocardiogry 29:298–306. doi:10.1111/j.1540-8175.2011.01575.x

    Article  Google Scholar 

  27. Su H-M, Lin T-H, Voon W-C et al (2007) Correlation of Tei index obtained from tissue Doppler echocardiography with invasive measurements of left ventricular performance. Echocardiogry 24:252–257. doi:10.1111/j.1540-8175.2007.00382.x

    Article  Google Scholar 

  28. Uemura K, Kawada T, Zheng C et al (2013) Myocardial performance index is sensitive to changes in cardiac contractility, but is also affected by vascular load condition. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Conf 2013:695–698. doi:10.1109/EMBC.2013.6609595

    Google Scholar 

  29. Kraigher-Krainer E, Shah AM, Gupta DK et al (2014) Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol 63:447–456. doi:10.1016/j.jacc.2013.09.052

    Article  PubMed  Google Scholar 

  30. Biering-Sørensen T, Mogelvang R, Schnohr P, Jensen JS (in press) Cardiac time intervals measured by tissue doppler imaging M-mode: association with hypertension, left ventricular geometry, and future ischemic cardiovascular diseases. J Am Heart Assoc

  31. Gorcsan J 3rd, Tanaka H (2011) Echocardiographic assessment of myocardial strain. J Am Coll Cardiol 58:1401–1413. doi:10.1016/j.jacc.2011.06.038

    Article  PubMed  Google Scholar 

  32. Ersbøll M, Valeur N, Mogensen UM et al (2013) Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J Am Coll Cardiol 61:2365–2373. doi:10.1016/j.jacc.2013.02.061

    Article  PubMed  Google Scholar 

  33. Ersbøll M, Andersen MJ, Valeur N et al (2014) Early diastolic strain rate in relation to systolic and diastolic function and prognosis in acute myocardial infarction: a two-dimensional speckle-tracking study. Eur Heart J 35:648–656. doi:10.1093/eurheartj/eht179

    Article  PubMed  Google Scholar 

  34. Cui W, Roberson DA, Chen Z et al (2008) Systolic and diastolic time intervals measured from Doppler tissue imaging: normal values and Z-score tables, and effects of age, heart rate, and body surface area. J Am Soc Echocardiogr 21:361–370. doi:10.1016/j.echo.2007.05.034

    Article  PubMed  Google Scholar 

  35. Bruch C, Schmermund A, Dagres N et al (2002) Tei-Index in coronary artery disease–validation in patients with overall cardiac and isolated diastolic dysfunction. Z Für Kardiologie 91:472–480

    Article  CAS  Google Scholar 

  36. Gillebert TC, Van de Veire N, De Buyzere ML, De Sutter J (2004) Time intervals and global cardiac function. Use and limitations. Eur Heart J 25:2185–2186. doi:10.1016/j.ehj.2004.10.017

    Article  PubMed  Google Scholar 

  37. Møller JE, Egstrup K, Køber L et al (2003) Prognostic importance of systolic and diastolic function after acute myocardial infarction. Am Heart J 145:147–153. doi:10.1067/mhj.2003.46

    Article  PubMed  Google Scholar 

  38. Møller JE, Søndergaard E, Poulsen SH, Egstrup K (2001) The Doppler echocardiographic myocardial performance index predicts left-ventricular dilation and cardiac death after myocardial infarction. Cardiology 95:105–111

    Article  PubMed  Google Scholar 

  39. Arnlöv J, Ingelsson E, Risérus U et al (2004) Myocardial performance index, a Doppler-derived index of global left ventricular function, predicts congestive heart failure in elderly men. Eur Heart J 25:2220–2225. doi:10.1016/j.ehj.2004.10.021

    Article  PubMed  Google Scholar 

  40. Arnlöv J, Lind L, Andrén B et al (2005) A Doppler-derived index of combined left ventricular systolic and diastolic function is an independent predictor of cardiovascular mortality in elderly men. Am Heart J 149:902–907. doi:10.1016/j.ahj.2004.07.022

    Article  PubMed  Google Scholar 

  41. Mishra RK, Kizer JR, Palmieri V et al (2007) Utility of the myocardial performance index in a population with high prevalences of obesity, diabetes, and hypertension: the strong heart study. Echocardiogry 24:340–347. doi:10.1111/j.1540-8175.2007.00415.x

    Article  Google Scholar 

  42. Dujardin KS, Tei C, Yeo TC et al (1998) Prognostic value of a Doppler index combining systolic and diastolic performance in idiopathic-dilated cardiomyopathy. Am J Cardiol 82:1071–1076

    Article  CAS  PubMed  Google Scholar 

  43. Kim H, Yoon H-J, Park H-S et al (2011) Usefulness of tissue Doppler imaging-myocardial performance index in the evaluation of diastolic dysfunction and heart failure with preserved ejection fraction. Clin Cardiol 34:494–499. doi:10.1002/clc.20932

    Article  PubMed  Google Scholar 

  44. Correale M, Totaro A, Greco CA et al (2012) Tissue Doppler time intervals predict the occurrence of rehospitalization in chronic heart failure: data from the daunia heart failure registry. Echocardiogry 29:906–913. doi:10.1111/j.1540-8175.2012.01729.x

    Article  Google Scholar 

Download references

Funding sources

The work was supported by The European Foundation for the Study of Diabetes/Pfizer European Programme 2010 for Research into Cardiovascular Risk Reduction in Patients with Diabetes; and The Danish Heart Foundation (#: 12-04-R90-A3840-22725).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Thorsten Jensen.

Ethics declarations

Conflict of interest

PR has board memberships in Astra Zeneca/BMS, Eli Lilly, Janssen, Novo Nordisk, Astellas, has received grants and/or have grants pending from Novo Nordisk, Novartis and Abbott, has received payment for lectures by Astra Zeneca/BMS, Novartis and Sanofi Aventis, and has stocks in Novo Nordisk. HUA has a member of an advisory board of Abbott and has stocks in Novo Nordisk. All other authors report no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous 3 years; no other relationships or activities that could appear to have influenced the submitted work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biering-Sørensen, T., Jensen, J.S., Andersen, H.U. et al. Cardiac time intervals and the association with 2D-speckle-tracking, tissue Doppler and conventional echocardiography: the Thousand&1 Study. Int J Cardiovasc Imaging 32, 789–798 (2016). https://doi.org/10.1007/s10554-016-0839-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-016-0839-7

Keywords

Navigation