Reproducibility of serial optical coherence tomography measurements for lumen area and plaque components in humans (The CLI-VAR [Centro per la Lotta Contro l’Infarto-variability] II study)

Abstract

Frequency-domain optical coherence tomography (FD-OCT) is a promising intracoronary imaging technique to study atherosclerosis. Indeed, its unprecedented spatial resolution allows the assessment of fibrous cap thickness, lipid pool and features of plaque vulnerability. Aim of this study was to determine the reproducibility of the in vivo FD-OCT measurements of lumen area and plaque components in serial studies. Twenty-six patients undergoing FD-OCT assessment of intermediate lesion during coronary angiography were included in this study. FD-OCT pullbacks were acquired twice from the same coronary segment at interval of 5 min without additional intervention and analyzed off-line at an independent imaging core laboratory. Lumen diameter (LD), lumen area (LA), fibrous cap (FC) thickness and lipid pool (LP) arc extension measurements were compared in 440 matched frames. Both the per-segment and per-frame analyses showed excellent correlation coefficients for the inter-pullback comparisons for all parameters explored (R > 0.95 and p < 0.001 in all cases). Accordingly, the Bland–Altman estimates of bias showed non-significant differences in the inter-pullback comparisons at all levels. Per-frame analysis showed a slightly variations of LA in 45.8 % of cases with changes greater than 2 % likely related to different phases of cardiac cycle. Nevertheless, nor FC thickness or circumferential arc of LP were affected by LA changes during serial FD-OCT acquisition. This study showed an excellent reproducibility of lumen and plaque component measurements obtained with FD-OCT in vivo. Thus, this intracoronary imaging technique could be used to assess atherosclerosis progression and describe accurate plaque evolution in repeated serial studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Maseri A (1997) Inflammation, atherosclerosis, and ischemic events—exploring the hidden side of the moon. N Engl J Med 336:1014–1016

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Maseri A, Fuster V (2003) Is there a vulnerable plaque? Circulation 107:2068–2071

    Article  PubMed  Google Scholar 

  3. 3.

    Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Kubo T, Imanishi T, Takarada S, Kuroi A, Ueno S, Yamano T, Tanimoto T, Matsuo Y, Masho T, Kitabata H, Tsuda K, Tomobuchi Y, Akasaka T (2007) Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol 50:933–939

    Article  PubMed  Google Scholar 

  5. 5.

    Prati F, Regar E, Mintz GS, Arbustini E, Di Mario C, Jang IK, Akasaka T, Costa M, Guagliumi G, Grube E, Ozaki Y, Pinto F, Serruys PW, Expert’s OCT Review document (2010) Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J 31:401–415

    Article  PubMed  Google Scholar 

  6. 6.

    Prati F, Petronio S, Van Boven AJ, Tendera M, De Luca L, de Belder MA, Galassi AR, Imola F, Montalescot G, Peruga JZ, Barnathan ES, Ellis S, Savonitto S, FINESSE-ANGIO substudy Investigators (2010) Evaluation of infarct-related coronary artery patency and microcirculatory function after facilitated percutaneous primary coronary angioplasty: the FINESSE-ANGIO (Facilitated Intervention with Enhanced Reperfusion Speed to Stop Events-Angiographic) study. JACC Cardiovasc Interv 3:1284–1291

    Article  PubMed  Google Scholar 

  7. 7.

    Prati F, Guagliumi G, Mintz GS, Costa M, Regar E, Akasaka T, Barlis P, Tearney GJ, Jang IK, Arbustini E, Bezerra HG, Ozaki Y, Bruining N, Dudek D, Radu M, Erglis A, Motreff P, Alfonso F, Toutouzas K, Gonzalo N, Tamburino C, Adriaenssens T, Pinto F, Serruys PW, Di Mario C, Expert’s OCT Review Document (2012) Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur Heart J 33:2513–2520

    PubMed Central  Article  PubMed  Google Scholar 

  8. 8.

    Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, Shishkov M, Houser S, Aretz HT, Halpern EF, Bouma BE (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111:1551–1555

    PubMed Central  Article  PubMed  Google Scholar 

  9. 9.

    Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, Bouma B, Bruining N, Cho JM, Chowdhary S, Costa MA, de Silva R, Dijkstra J, Di Mario C, Dudek D, Falk E, Feldman MD, Fitzgerald P, Garcia-Garcia HM, Gonzalo N, Granada JF, Guagliumi G, Holm NR, Honda Y, Ikeno F, Kawasaki M, Kochman J, Koltowski L, Kubo T, Kume T, Kyono H, Lam CC, Lamouche G, Lee DP, Leon MB, Maehara A, Manfrini O, Mintz GS, Mizuno K, Morel MA, Nadkarni S, Okura H, Otake H, Pietrasik A, Prati F, Räber L, Radu MD, Rieber J, Riga M, Rollins A, Rosenberg M, Sirbu V, Serruys PW, Shimada K, Shinke T, Shite J, Siegel E, Sonoda S, Suter M, Takarada S, Tanaka A, Terashima M, Thim T, Uemura S, Ughi GJ, van Beusekom HM, van der Steen AF, van Es GA, van Soest G, Virmani R, Waxman S, Weissman NJ, Weisz G, International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT) (2012) Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol 59:1058–1072

    Article  PubMed  Google Scholar 

  10. 10.

    Tanimoto S, Rodriguez-Granillo G, Barlis P, de Winter S, Bruining N, Hamers R, Knappen M, Verheye S, Serruys PW, Regar E (2008) A novel approach for quantitative analysis of intracoronary optical coherence tomography: high inter-observer agreement with computer-assisted contour detection. Catheter Cardiovasc Interv 72:228–235

    Article  PubMed  Google Scholar 

  11. 11.

    Gonzalo N, Garcia-Garcia HM, Serruys PW, Commissaris KH, Bezerra H, Gobbens P, Costa M, Regar E (2009) Reproducibility of quantitative optical coherence tomography for stent analysis. Euro Interven 5:224–232

    Google Scholar 

  12. 12.

    Fedele S, Biondi-Zoccai G, Kwiatkowski P, Di Vito L, Occhipinti M, Cremonesi A, Albertucci M, Materia L, Paoletti G, Prati F (2012) Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l’Infarto-VARiability] study). Am J Cardiol 110:1106–1112

    Article  PubMed  Google Scholar 

  13. 13.

    Bruining N, von Birgelen C, de Feyter PJ, Ligthart J, Li W, Serruys PW, Roelandt JR (1998) ECG-gated versus nongated three-dimensional intracoronary ultrasound analysis: implications forvolumetric measurements. Cathet Cardiovasc Diagn 43:254–260

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Hartmann M, Mattern ES, Huisman J, van Houwelingen GK, de Man FH, Stoel MG, Danse PW, Louwerenburg HW, von Birgelen C (2009) Reproducibility of volumetric intravascular ultrasound radiofrequency-based analysis of coronary plaque composition in vivo. Int J Cardiovasc Imaging 25:13–23

    PubMed Central  Article  PubMed  Google Scholar 

  15. 15.

    Tsutsui H, Schoenhagen P, Crowe TD, Klingensmith JD, Vince DG, Nissen SE, Tuzcu EM (2003) Influence of coronary pulsation on volumetric intravascular ultrasound measurements performed without ECG-gating. Validation in vessel segments with minimal disease. Int J Cardiovasc Imaging 19:51–57

    Article  PubMed  Google Scholar 

  16. 16.

    Prati F, Cera M, Ramazzotti V, Imola F, Giudice R, Albertucci M (2007) Safety and feasibility of a new non-occlusive technique for facilitated intracoronary optical coherence tomography (OCT) acquisition in various clinical and anatomical scenarios. Euro Interv 3:365–370

    Google Scholar 

  17. 17.

    Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI (2009) Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv 2:1035–1046

    PubMed Central  Article  PubMed  Google Scholar 

  18. 18.

    Di Vito L, Heung Yoon J, Kato K, Yonetsu T, Vergallo R, Costa M, Bezerra HG, Arbustini E, Narula J, Crea F, Prati F (2014) Comprehensive overview of definitions for optical coherence tomography-based plaque and stent analyses. Coron Artery Dis 25:172–185

    Article  PubMed  Google Scholar 

Download references

Funding

Supported by a grant from the Centro per la Lotta contro l’Infarto - Fondazione Onlus, Rome, Italy

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francesco Prati.

Ethics declarations

Conflict of interest

Dr. Prati has served as a consultant for St. Jude Medical. The other authors disclose no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paoletti, G., Marco, V., Romagnoli, E. et al. Reproducibility of serial optical coherence tomography measurements for lumen area and plaque components in humans (The CLI-VAR [Centro per la Lotta Contro l’Infarto-variability] II study). Int J Cardiovasc Imaging 32, 381–387 (2016). https://doi.org/10.1007/s10554-015-0803-y

Download citation

Keywords

  • Optical coherence tomography
  • Measurements reproducibility
  • Atherosclerotic plaque