Non-invasive volumetric assessment of aortic atheroma: a core laboratory validation using computed tomography angiography

  • Muhammad Hammadah
  • Mohammed Qintar
  • Steven E. Nissen
  • Julie St. John
  • Saqer Alkharabsheh
  • Motunrayo Mobolaji-Lawal
  • Femi Philip
  • Kiyoko Uno
  • Yu Kataoka
  • Brett Babb
  • Roman Poliszczuk
  • Samir R. Kapadia
  • E. Murat Tuzcu
  • Paul Schoenhagen
  • Stephen J. Nicholls
  • Rishi PuriEmail author
Original Paper


Aortic atherosclerosis has been linked with worse peri- and post-procedural outcomes following a range of aortic procedures. Yet, there are currently no standardized methods for non-invasive volumetric pan-aortic plaque assessment. We propose a novel means of more accurately assessing plaque volume across whole aortic segments using computed tomography angiography (CTA) imaging. Sixty patients who underwent CTA prior to trans-catheter aortic valve implantation were included in this analysis. Specialized software analysis (3mensio Vascular™, Pie Medical, Maastricht, Netherlands) was used to reconstruct images using a centerline approach, thus creating true cross-sectional aortic images, akin to those images produced with intravascular ultrasonography. Following aortic segmentation (from the aortic valve to the renal artery origin), atheroma areas were measured across multiple contiguous evenly spaced (10 mm) cross-sections. Percent atheroma volume (PAV), total atheroma volume (TAV) and calcium score were calculated. In our populations (age 79.9 ± 8.5 years, male 52 %, diabetes 27 %, CAD 84 %, PVD 20 %), mean ± SD number of cross sections measured for each patient was 35.1 ± 3.5 sections. Mean aortic PAV and TAV were 33.2 ± 2.51 % and 83,509 ± 17,078 mm3, respectively. Median (IQR) calcium score was 1.5 (0.7–2.5). Mean (SD) inter-observer coefficient of variation and agreement for plaque area among 4 different analysts was 14.1 (5.4), and the mean (95 % CI) Lin’s concordance correlation coefficient was 0.79 (0.62–0.89), effectively simulating a Core Laboratory scenario. We provide an initial validation of cross-sectional volumetric aortic atheroma assessment using CTA. This proposed methodology highlights the potential for utilizing non-invasive aortic plaque imaging for risk prediction across a range of clinical scenarios.


Aortic atheroma Plaque volume CTA CT angiogram 



Computed tomography angiography


Multi-detector computed tomography angiography


Total atheroma volume


Percent atheroma volume


Transcatheter aortic valve implantation


Conflict of interest

Steven E. Nissen has received research support to perform clinical trials through the Cleveland Clinic Coordinating Center for Clinical Research from Pfizer, AstraZeneca, Novartis, Roche, Daiichi-Sankyo, Takeda, Sanofi-Aventis, Resverlogix, and Eli Lilly; and is a consultant/advisor for many pharmaceutical companies but requires them to donate all honoraria or consulting fees directly to charity so that he receives neither income nor a tax deduction. Stephen J. Nicholls has received speaking honoraria from AstraZeneca, Pfizer, Merck Schering-Plough and Takeda, consulting fees from AstraZeneca, Pfizer, Merck Schering-Plough, Takeda, Roche, NovoNordisk, LipoScience and Anthera and research support from AstraZeneca and Lipid Sciences. All other authors have reported that they have no relationships to disclose.


  1. 1.
    Holman RL, McGill HC, Strong JP, Geer JC (1958) The natural history of atherosclerosis: the early aortic lesions as seen in New Orleans in the middle of the 20th century*. Am J Pathol 34(2):209–235PubMedPubMedCentralGoogle Scholar
  2. 2.
    Davila-Roman VG, Murphy SF, Nickerson NJ, Kouchoukos NT, Schechtman KB, Barzilai B (1999) Atherosclerosis of the ascending aorta is an independent predictor of long-term neurologic events and mortality. J Am Coll Cardiol 33(5):1308–1316PubMedCrossRefGoogle Scholar
  3. 3.
    Mehta D, Curwin J, Gomes JA, Fuster V (1997) Sudden death in coronary artery disease: acute ischemia versus myocardial substrate. Circulation 96(9):3215–3223. doi: 10.1161/01.cir.96.9.3215 PubMedCrossRefGoogle Scholar
  4. 4.
    Nicholls SJ, Hsu A, Wolski K, Hu B, Bayturan O, Lavoie A, Uno K, Tuzcu EM, Nissen SE (2010) Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. J Am Coll Cardiol 55(21):2399–2407. doi: 10.1016/j.jacc.2010.02.026 PubMedCrossRefGoogle Scholar
  5. 5.
    Calvert PA, Obaid DR, O’Sullivan M, Shapiro LM, McNab D, Densem CG, Schofield PM, Braganza D, Clarke SC, Ray KK, West NE, Bennett MR (2011) Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in vulnerable atherosclerosis) study. JACC Cardiovasc imaging 4(8):894–901. doi: 10.1016/j.jcmg.2011.05.005 PubMedCrossRefGoogle Scholar
  6. 6.
    Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP, Parise H, Templin B, White R, Zhang Z, Serruys PW (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364(3):226–235. doi: 10.1056/NEJMoa1002358 PubMedCrossRefGoogle Scholar
  7. 7.
    Puri R, Wolski K, Uno K, Kataoka Y, King KL, Crowe TD, Kapadia SR, Tuzcu EM, Nissen SE, Nicholls SJ (2013) Left main coronary atherosclerosis progression, constrictive remodeling, and clinical events. JACC Cardiovasc Interv 6(1):29–35. doi: 10.1016/j.jcin.2012.09.006 PubMedCrossRefGoogle Scholar
  8. 8.
    Puri R, Libby P, Nissen SE, Wolski K, Ballantyne CM, Barter PJ, Chapman MJ, Erbel R, Raichlen JS, Uno K, Kataoka Y, Tuzcu EM, Nicholls SJ (2014) Long-term effects of maximally intensive statin therapy on changes in coronary atheroma composition: insights from SATURN. Eur Heart J Cardiovasc Img 15(4):380–388. doi: 10.1093/ehjci/jet251 CrossRefGoogle Scholar
  9. 9.
    Puri R, Nissen SE, Shao M, Ballantyne CM, Barter PJ, Chapman MJ, Erbel R, Libby P, Raichlen JS, Uno K, Kataoka Y, Nicholls SJ (2013) Coronary atheroma volume and cardiovascular events during maximally intensive statin therapy. Eur Heart J 34(41):3182–3190. doi: 10.1093/eurheartj/eht260 PubMedCrossRefGoogle Scholar
  10. 10.
    Rumberger JA, Behrenbeck T, Breen JF, Sheedy PF 2nd (1999) Coronary calcification by electron beam computed tomography and obstructive coronary artery disease: a model for costs and effectiveness of diagnosis as compared with conventional cardiac testing methods. J Am Coll Cardiol 33(2):453–462PubMedCrossRefGoogle Scholar
  11. 11.
    Wong ND, Hsu JC, Detrano RC, Diamond G, Eisenberg H, Gardin JM (2000) Coronary artery calcium evaluation by electron beam computed tomography and its relation to new cardiovascular events. Am J Cardiol 86(5):495–498PubMedCrossRefGoogle Scholar
  12. 12.
    Calvert PA, Obaid DR, O’Sullivan M, Shapiro LM, McNab D, Densem CG, Schofield PM, Braganza D, Clarke SC, Ray KK, West NE, Bennett MR (2011) Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in vulnerable atherosclerosis) study. JACC Cardiovasc Imaging 4(8):894–901. doi: 10.1016/j.jcmg.2011.05.005 PubMedCrossRefGoogle Scholar
  13. 13.
    Madder RD, Goldstein JA, Madden SP, Puri R, Wolski K, Hendricks M, Sum ST, Kini A, Sharma S, Rizik D, Brilakis ES, Shunk KA, Petersen J, Weisz G, Virmani R, Nicholls SJ, Maehara A, Mintz GS, Stone GW, Muller JE (2013) Detection by near-infrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 6(8):838–846. doi: 10.1016/j.jcin.2013.04.012 PubMedCrossRefGoogle Scholar
  14. 14.
    Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, Pinto FJ, Rosenfield K, Siegel RJ, Tuzcu EM, Yock PG (2001) American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS)33: A report of the American College of Cardiology Task Force on clinical expert consensus documents developed in collaboration with the european society of cardiology endorsed by the society of cardiac angiography and interventions. J Am Coll Cardiol 37:1478–1492. doi: 10.1016/S0735-1097(01)01175-5 PubMedCrossRefGoogle Scholar
  15. 15.
    Nissen SE, Tuzcu EM, Schoenhagen P, Brown BG, Ganz P, Vogel RA, Crowe T, Howard G, Cooper CJ, Brodie B, Grines CL, DeMaria AN (2004) Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 291(9):1071–1080PubMedCrossRefGoogle Scholar
  16. 16.
    Nissen SE, Tuzcu EM, Libby P, Thompson PD, Ghali M, Garza D, Berman L, Shi H, Buebendorf E, Topol EJ (2004) Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA 292(18):2217–2225. doi: 10.1001/jama.292.18.2217 PubMedCrossRefGoogle Scholar
  17. 17.
    Nissen SE, Tuzcu EM, Brewer HB, Sipahi I, Nicholls SJ, Ganz P, Schoenhagen P, Waters DD, Pepine CJ, Crowe TD, Davidson MH, Deanfield JE, Wisniewski LM, Hanyok JJ, Kassalow LM, Investigators AIATE (2006) Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med 354(12):1253–1263. doi: 10.1056/NEJMoa054699 PubMedCrossRefGoogle Scholar
  18. 18.
    Nissen SE, Nicholls SJ, Wolski K, Nesto R, Kupfer S, Perez A, Jure H, De Larochelliere R, Staniloae CS, Mavromatis K, Saw J, Hu B, Lincoff AM, Tuzcu EM (2008) Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 299(13):1561–1573. doi: 10.1001/jama.299.13.1561 PubMedCrossRefGoogle Scholar
  19. 19.
    Nissen SE, Nicholls SJ, Sipahi I, Libby P, Raichlen JS, Ballantyne CM, Davignon J, Erbel R, Fruchart JC, Tardif JC, Schoenhagen P, Crowe T, Cain V, Wolski K, Goormastic M, Tuzcu EM (2006) Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295(13):1556–1565. doi: 10.1001/jama.295.13.jpc60002 PubMedCrossRefGoogle Scholar
  20. 20.
    Nissen SE, Yock P (2001) Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 103(4):604–616PubMedCrossRefGoogle Scholar
  21. 21.
    Kurra V, Lieber ML, Sola S, Kalahasti V, Hammer D, Gimple S, Flamm SD, Bolen MA, Halliburton SS, Mihaljevic T, Desai MY, Schoenhagen P (2010) Extent of thoracic aortic atheroma burden and long-term mortality after cardiothoracic surgery. JACC Cardiovasc Imaging 3(10):1020–1029. doi: 10.1016/j.jcmg.2010.08.006 PubMedCrossRefGoogle Scholar
  22. 22.
    Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45(1):255–268PubMedCrossRefGoogle Scholar
  23. 23.
    Lloyd-Jones DM (2010) Cardiovascular risk prediction: basic concepts, current status, and future directions. Circulation 121(15):1768–1777. doi: 10.1161/circulationaha.109.849166 PubMedCrossRefGoogle Scholar
  24. 24.
    Cooney MT, Dudina A, Whincup P, Capewell S, Menotti A, Jousilahti P, Njolstad I, Oganov R, Thomsen T, Tverdal A, Wedel H, Wilhelmsen L, Graham I, Investigators S (2009) Re-evaluating the Rose approach: comparative benefits of the population and high-risk preventive strategies. Eur J Prev Cardiol 16(5):541–549. doi: 10.1097/HJR.0b013e32832b38a1 CrossRefGoogle Scholar
  25. 25.
    Blaha MJ, Silverman MG, Budoff MJ (2014) Is there a role for coronary artery calcium scoring for management of asymptomatic patients at risk for coronary artery disease? Clinical risk scores are not sufficient to define primary prevention treatment strategies among asymptomatic patients. Circ Cardiovasc Imaging 7(2):398–408. doi: 10.1161/CIRCIMAGING.113.000341 PubMedCrossRefGoogle Scholar
  26. 26.
    Silverman MG, Blaha MJ, Krumholz HM, Budoff MJ, Blankstein R, Sibley CT, Agatston A, Blumenthal RS, Nasir K (2013) Impact of coronary artery calcium on coronary heart disease events in individuals at the extremes of traditional risk factor burden: the multi-ethnic study of atherosclerosis. Eur Heart J. doi: 10.1093/eurheartj/eht508 PubMedPubMedCentralGoogle Scholar
  27. 27.
    Nasir K, Rubin J, Blaha MJ, Shaw LJ, Blankstein R, Rivera JJ, Khan AN, Berman D, Raggi P, Callister T, Rumberger JA, Min J, Jones SR, Blumenthal RS, Budoff MJ (2012) Interplay of coronary artery calcification and traditional risk factors for the prediction of all-cause mortality in asymptomatic individuals. Circ Cardiovas Imaging 5(4):467–473. doi: 10.1161/circimaging.111.964528 CrossRefGoogle Scholar
  28. 28.
    Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, Liu K, Shea S, Szklo M, Bluemke DA, O’Leary DH, Tracy R, Watson K, Wong ND, Kronmal RA (2008) Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 358(13):1336–1345. doi: 10.1056/NEJMoa072100 PubMedCrossRefGoogle Scholar
  29. 29.
    Rana JS, Gransar H, Wong ND, Shaw L, Pencina M, Nasir K, Rozanski A, Hayes SW, Thomson LE, Friedman JD, Min JK, Berman DS (2012) Comparative value of coronary artery calcium and multiple blood biomarkers for prognostication of cardiovascular events. Am J Cardiol 109(10):1449–1453. doi: 10.1016/j.amjcard.2012.01.358 PubMedCrossRefGoogle Scholar
  30. 30.
    Mohlenkamp S, Lehmann N, Moebus S, Schmermund A, Dragano N, Stang A, Siegrist J, Mann K, Jockel KH, Erbel R (2011) Quantification of coronary atherosclerosis and inflammation to predict coronary events and all-cause mortality. J Am Coll Cardiol 57(13):1455–1464. doi: 10.1016/j.jacc.2010.10.043 PubMedCrossRefGoogle Scholar
  31. 31.
    Evangelista A, Flachskampf FA, Erbel R, Antonini-Canterin F, Vlachopoulos C, Rocchi G, Sicari R, Nihoyannopoulos P, Zamorano J, Pepi M, Breithardt O-A, Plońska-Gościniak E (2010) Echocardiography in aortic diseases: EAE recommendations for clinical practice. Eur J Echocardiogr 11(8):645–658. doi: 10.1093/ejechocard/jeq056 PubMedCrossRefGoogle Scholar
  32. 32.
    Chatzikonstantinou A, Krissak R, Fluchter S, Artemis D, Schaefer A, Schoenberg SO, Hennerici MG, Fink C (2012) CT angiography of the aorta is superior to transesophageal echocardiography for determining stroke subtypes in patients with cryptogenic ischemic stroke. Cerebrovasc Dis (Basel, Switz) 33(4):322–328. doi: 10.1159/000335828 CrossRefGoogle Scholar
  33. 33.
    Kronzon I, Tunick PA (2006) Aortic atherosclerotic disease and stroke. Circulation 114(1):63–75. doi: 10.1161/circulationaha.105.593418 PubMedCrossRefGoogle Scholar
  34. 34.
    Tenenbaum A, Garniek A, Shemesh J, Fisman EZ, Stroh CI, Itzchak Y, Vered Z, Motro M (1998) Dual-helical CT for detecting aortic atheromas as a source of stroke: comparison with transesophageal echocardiography. Radiology 208(1):153–158. doi: 10.1148/radiology.208.1.9646807 PubMedCrossRefGoogle Scholar
  35. 35.
    Hussain SI, Gilkeson RC, Suarez JI, Tarr R, Schluchter M, Landis DM, Zaidat OO (2008) Comparing multislice electrocardiogram-gated spiral computerized tomography and transesophageal echocardiography in evaluating aortic atheroma in patients with acute ischemic stroke. J Stroke Cerebrovasc Dis 17(3):134–140. doi: 10.1016/j.jstrokecerebrovasdis.2007.12.008 PubMedCrossRefGoogle Scholar
  36. 36.
    Fayad ZA, Nahar T, Fallon JT, Goldman M, Aguinaldo JG, Badimon JJ, Shinnar M, Chesebro JH, Fuster V (2000) In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with transesophageal echocardiography. Circulation 101(21):2503–2509PubMedCrossRefGoogle Scholar
  37. 37.
    Kramer CM (2002) Magnetic resonance imaging to identify the high-risk plaque. Am J Cardiol 90(10C):15L–17LPubMedCrossRefGoogle Scholar
  38. 38.
    Bergman P, van der Linden J, Forsberg K, Ohman M (2004) Preoperative computed tomography or intraoperative epiaortic ultrasound for the diagnosis of atherosclerosis of the ascending aorta? Heart Surg Forum 7(3):E245–E249. doi: 10.1532/hsf98.20033009 (discussion E249) PubMedCrossRefGoogle Scholar
  39. 39.
    Ihara T, Komori K, Yamamoto K, Kobayashi M, Banno H, Kodama A (2013) Three-dimensional workstation is useful for measuring the correct size of abdominal aortic aneurysm diameters. Ann Vasc Surg 27(2):154–161. doi: 10.1016/j.avsg.2012.03.009 PubMedCrossRefGoogle Scholar
  40. 40.
    Dugas A, Therasse E, Kauffmann C, Tang A, Elkouri S, Nozza A, Giroux MF, Oliva VL, Soulez G (2012) Reproducibility of abdominal aortic aneurysm diameter measurement and growth evaluation on axial and multiplanar computed tomography reformations. Cardiovasc Interv Radiol 35(4):779–787. doi: 10.1007/s00270-011-0259-y CrossRefGoogle Scholar
  41. 41.
    Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H, Evangelista A, Falk V, Frank H, Gaemperli O, Grabenwoger M, Haverich A, Iung B, Manolis AJ, Meijboom F, Nienaber CA, Roffi M, Rousseau H, Sechtem U, Sirnes PA, Allmen RS, Vrints CJ, Guidelines ESCCfP (2014) 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the European society of cardiology (ESC). Eur Heart J 35(41):2873–2926. doi: 10.1093/eurheartj/ehu281 PubMedCrossRefGoogle Scholar
  42. 42.
    Iribarren C, Sidney S, Sternfeld B, Browner WS (2000) Calcification of the aortic arch: risk factors and association with coronary heart disease, stroke, and peripheral vascular disease. JAMA 283(21):2810–2815PubMedCrossRefGoogle Scholar
  43. 43.
    Ferrari E, Vidal R, Chevallier T, Baudouy M (1999) Atherosclerosis of the thoracic aorta and aortic debris as a marker of poor prognosis: benefit of oral anticoagulants. J Am Coll Cardiol 33(5):1317–1322PubMedCrossRefGoogle Scholar
  44. 44.
    Amarenco P, Cohen A, Tzourio C, Bertrand B, Hommel M, Besson G, Chauvel C, Touboul PJ, Bousser MG (1994) Atherosclerotic disease of the aortic arch and the risk of ischemic stroke. N Engl J Med 331(22):1474–1479. doi: 10.1056/nejm199412013312202 PubMedCrossRefGoogle Scholar
  45. 45.
    van der Linden J, Hadjinikolaou L, Bergman P, Lindblom D (2001) Postoperative stroke in cardiac surgery is related to the location and extent of atherosclerotic disease in the ascending aorta. J Am Coll Cardiol 38(1):131–135PubMedCrossRefGoogle Scholar
  46. 46.
    Sankaranarayanan R, Msairi A, Davis GK (2007) Stroke complicating cardiac catheterization—a preventable and treatable complication. J Invas Cardiol 19(1):40–45Google Scholar
  47. 47.
    Athappan G, Gajulapalli RD, Sengodan P, Bhardwaj A, Ellis SG, Svensson L, Tuzcu EM, Kapadia SR (2014) Influence of transcatheter aortic valve replacement strategy and valve design on stroke after transcatheter aortic valve replacement: a meta-analysis and systematic review of literature. J Am Coll Cardiol 63(20):2101–2110. doi: 10.1016/j.jacc.2014.02.540 PubMedCrossRefGoogle Scholar
  48. 48.
    Van Mieghem NM, Schipper ME, Ladich E, Faqiri E, van der Boon R, Randjgari A, Schultz C, Moelker A, van Geuns RJ, Otsuka F, Serruys PW, Virmani R, de Jaegere PP (2013) Histopathology of embolic debris captured during transcatheter aortic valve replacement. Circulation 127(22):2194–2201. doi: 10.1161/CIRCULATIONAHA.112.001091 PubMedCrossRefGoogle Scholar
  49. 49.
    Corti R, Fuster V, Fayad ZA, Worthley SG, Helft G, Chaplin WF, Muntwyler J, Viles-Gonzalez JF, Weinberger J, Smith DA, Mizsei G, Badimon JJ (2005) Effects of aggressive versus conventional lipid-lowering therapy by simvastatin on human atherosclerotic lesions: a prospective, randomized, double-blind trial with high-resolution magnetic resonance imaging. J Am Coll Cardiol 46(1):106–112. doi: 10.1016/j.jacc.2005.03.054 PubMedCrossRefGoogle Scholar
  50. 50.
    Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, Fuster V, Ballantyne CM, Stein EA, Tardif JC, Rudd JH, Farkouh ME, Tawakol A (2011) Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 378(9802):1547–1559. doi: 10.1016/S0140-6736(11)61383-4 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Mihai G, Varghese J, Kampfrath T, Gushchina L, Hafer L, Deiuliis J, Maiseyeu A, Simonetti OP, Lu B, Rajagopalan S (2013) Aliskiren effect on plaque progression in established atherosclerosis using high resolution 3D MRI (ALPINE): a double-blind placebo-controlled trial. JAMA 2(3):e004879. doi: 10.1161/JAHA.112.004879 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Muhammad Hammadah
    • 1
  • Mohammed Qintar
    • 1
  • Steven E. Nissen
    • 2
    • 3
  • Julie St. John
    • 2
  • Saqer Alkharabsheh
    • 1
  • Motunrayo Mobolaji-Lawal
    • 4
  • Femi Philip
    • 3
  • Kiyoko Uno
    • 3
  • Yu Kataoka
    • 5
  • Brett Babb
    • 3
  • Roman Poliszczuk
    • 3
  • Samir R. Kapadia
    • 3
  • E. Murat Tuzcu
    • 3
  • Paul Schoenhagen
    • 3
  • Stephen J. Nicholls
    • 5
    • 6
  • Rishi Puri
    • 2
    • 3
    • 6
    Email author
  1. 1.Department of Internal MedicineCleveland Clinic FoundationClevelandUSA
  2. 2.Atherosclerosis Imaging Core Laboratory, Cleveland Clinic Coordinating Center for Clinical Research (C5R)Cleveland ClinicClevelandUSA
  3. 3.Department of Cardiovascular MedicineCleveland ClinicClevelandUSA
  4. 4.Lerner College of MedicineCleveland ClinicClevelandUSA
  5. 5.South Australian Health and Medical Research InstituteAdelaideAustralia
  6. 6.University of AdelaideAdelaideAustralia

Personalised recommendations