Skip to main content

Advertisement

Log in

Differences in quantitative assessment of myocardial scar and gray zone by LGE-CMR imaging using established gray zone protocols

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) imaging is the gold standard for myocardial scar evaluation. Heterogeneous areas of scar (‘gray zone’), may serve as arrhythmogenic substrate. Various gray zone protocols have been correlated to clinical outcomes and ventricular tachycardia channels. This study assessed the quantitative differences in gray zone and scar core sizes as defined by previously validated signal intensity (SI) threshold algorithms. High quality LGE-CMR images performed in 41 cardiomyopathy patients [ischemic (33) or non-ischemic (8)] were analyzed using previously validated SI threshold methods [Full Width at Half Maximum (FWHM), n-standard deviation (NSD) and modified-FWHM]. Myocardial scar was defined as scar core and gray zone using SI thresholds based on these methods. Scar core, gray zone and total scar sizes were then computed and compared among these models. The median gray zone mass was 2–3 times larger with FWHM (15 g, IQR: 8–26 g) compared to NSD or modified-FWHM (5 g, IQR: 3–9 g; and 8 g. IQR: 6–12 g respectively, p < 0.001). Conversely, infarct core mass was 2.3 times larger with NSD (30 g, IQR: 17–53 g) versus FWHM and modified-FWHM (13 g, IQR: 7–23 g, p < 0.001). The gray zone extent (percentage of total scar that was gray zone) also varied significantly among the three methods, 51 % (IQR: 42–61 %), 17 % (IQR: 11–21 %) versus 38 % (IQR: 33–43 %) for FWHM, NSD and modified-FWHM respectively (p < 0.001). Considerable variability exists among the current methods for MRI defined gray zone and scar core. Infarct core and total myocardial scar mass also differ using these methods. Further evaluation of the most accurate quantification method is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FWHM:

Full width at half maximum

CMR:

Cardiac magnetic resonance

LGE-CMR:

Late gadolinium enhancement cardiac magnetic resonance

LV:

Left ventricle

LVEDV:

Left ventricular end-diastolic volume

LVESV:

Left ventricular end-systolic volume

m-FWHM:

Modified full width at half maximum

MRI:

Magnetic resonance imaging

MI:

Myocardial infarction

NSD:

N-standard deviation

ROI:

Region of interest

SCMR:

Society for cardiovascular magnetic resonance

SI:

Signal intensity

VT:

Ventricular tachycardia

References

  1. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J et al (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002

    Article  CAS  PubMed  Google Scholar 

  2. Schelbert EB, Hsu LY, Anderson SA, Mohanty BD, Karim SM, Kellman P, Aletras AH et al (2010) Late gadolinium-enhancement cardiac magnetic resonance identifies postinfarction myocardial fibrosis and the border zone at the near cellular level in ex vivo rat heart. Circ Cardiovasc Imaging 3:743–752

    Article  PubMed Central  PubMed  Google Scholar 

  3. de Bakker JM, van Capelle FJ, Janse MJ, Wilde AA, Coronel R, Becker AE, Dingemans KP et al (1988) Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease: electrophysiologic and anatomic correlation. Circulation 77:589–606

    Article  PubMed  Google Scholar 

  4. Stevenson WG, Khan H, Sager P, Saxon LA, Middlekauff HR, Natterson PD, Wiener I et al (1993) Identification of reentry circuit sites during catheter mapping and radiofrequency ablation of ventricular tachycardia late after myocardial infarction. Circulation 88:1647–1670

    Article  CAS  PubMed  Google Scholar 

  5. Bello D, Fieno DS, Kim RJ, Pereles FS, Passman R, Song G, Kadish AH et al (2005) Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J Am Coll Cardiol 45:1104–1108

    Article  PubMed  Google Scholar 

  6. Kwong RY, Chan AK, Brown KA, Chan CW, Reynolds HG, Tsang S, Davis RB (2006) Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation 113:2733–2743

    Article  PubMed  Google Scholar 

  7. Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M, Sheppard MN et al (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48:1977–1985

    Article  PubMed  Google Scholar 

  8. Hundley WG, Bluemke D, Bogaert JG, Friedrich MG, Higgins CB, Lawson MA, McConnell MV et al (2009) Society for Cardiovascular Magnetic Resonance guidelines for reporting cardiovascular magnetic resonance examinations. J Cardiovasc Magn Reson 11:5. doi:10.1186/1532-429X-11-5

    Article  PubMed Central  PubMed  Google Scholar 

  9. Kim HW, Farzaneh-Far A, Kim RJ (2010) Cardiovascular Magnetic Resonance in patients with myocardial infarction: current and emerging applications. JACC 55:1–16

    Article  Google Scholar 

  10. Heiberg E, Ugander M, Englom H, Gotberg M, Olivercrona GK, Erlinger D, Arheden H (2008) Automated quantification of myocardial infarction from MR images by accounting for partial volume effects: animal, phantom, and human study. Radiology 246:581–588

    Article  PubMed  Google Scholar 

  11. Amado LC, Gerber BL, Gupta SN, Rettmann DW, Szarf G, Schock R, Nasir K et al (2004) Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol 44:2383–2389

    Article  PubMed  Google Scholar 

  12. Yan AT, Shayne AJ, Brown KA, Gupta SN, Chan CW, Luu TM, Di Carli MF et al (2006) Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation 114:32–39

    Article  PubMed  Google Scholar 

  13. Schmidt A, Azevedo CF, Cheng A, Gupta SN, Bluemke DA, Foo TK, Gerstenblith G et al (2007) Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation 115:2006–2014

    Article  PubMed Central  PubMed  Google Scholar 

  14. Roes SD, Borleffs CJ, van der Geest RJ, Westenberg JJ, Marsan NA, Kaandorp TA, Reiber JH et al (2009) Infarct tissue heterogeneity assessed with contrast-enhanced MRI predicts spontaneous ventricular arrhythmia in patients with ischemic cardiomyopathy and implantable cardioverter-defibrillator. Circ Cardiovasc Imaging 2:183–190

    Article  PubMed  Google Scholar 

  15. Bondarenko O, Beek AM, Hofman MB, Kuhl HP, Twisk JW, van Dockum WG, Visser CA et al (2005) Standardizing the definition of hyperenhancement in the quantitative assessment of infarct size and myocardial viability using delayed contrast-enhanced CMR. J Cardiovasc Magn Reson 7:481–485

    Article  PubMed  Google Scholar 

  16. Hsu LY, Natanzon A, Kellman P, Hirsch GA, Aletras AH, Arai AE (2006) Quantitative myocardial infarction on delayed enhancement MRI. Part I: animal validation of an automated feature analysis and combined thresholding infarct sizing algorithm. J Magn Reson Imaging 23:298–308

    Article  PubMed  Google Scholar 

  17. Hsu LY, Ingkanisorn WP, Kellman P, Aletras AH, Arai AE (2006) Quantitative myocardial infarction on delayed enhancement MRI. Part II: clinical application of an automated feature analysis and combined thresholding infarct sizing algorithm. J Magn Reson Imaging 23:309–314

    Article  PubMed  Google Scholar 

  18. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, Kim RJ et al (2013) Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson 15:35. doi:10.1186/1532-429X-15-35

    Article  PubMed Central  PubMed  Google Scholar 

  19. Estner HL, Zviman MM, Herzka D, Miller F, Castro V, Nazarian S, Ashikaga H et al (2011) The critical isthmus sites of ischemic ventricular tachycardia are in zones of tissue heterogeneity, visualized by magnetic resonance imaging. Heart Rhythm 8:1942–1949

    Article  PubMed  Google Scholar 

  20. Andreu D, Berruezo A, Ortiz-Pérez JT, Silva E, Mont L, Borras R, de Caralt TM et al (2011) Integration of 3D electroanatomic maps and magnetic resonance scar characterization into the navigation system to guide ventricular tachycardia ablation. Circ Arrhythm Electrophysiol 4:674–683

    Article  PubMed  Google Scholar 

  21. Perez-David E, Arenal A, Rubio-Guivernau JL, del Castillo R, Atea L, Arbelo E, Caballero E et al (2011) Noninvasive identification of ventricular tachycardia-related conducting channels using contrast-enhanced magnetic resonance imaging in patients with chronic myocardial infarction: comparison of signal intensity scar mapping and endocardial voltage mapping. J Am Coll Cardiol 57:184–194

    Article  PubMed  Google Scholar 

  22. de Haan S, Meijers TA, Knaapen P, Beek AM, van Rossum AC, Allaart CP (2011) Scar size and characteristics assessed by CMR predict ventricular arrhythmias in ischaemic cardiomyopathy: comparison of previously validated models. Heart 97:1951–1956

    Article  PubMed  Google Scholar 

  23. Pujadas S, Reddy GP, Weber O, Lee JJ, Higgins CB (2004) MR imaging assessment of cardiac function. J Magn Reson Imaging 19:789–799

    Article  PubMed  Google Scholar 

  24. Śpiewak M, Małek Ł, Chojnowska L, Misko J, Petryka J, Klopotowski M, Milosz B et al (2010) Late gadolinium enhancement gray zone in patients with hypertrophic cardiomyopathy. Comparison of different gray zone definitions. Int J Cardiovasc Imaging 26:693–699

    Article  PubMed  Google Scholar 

  25. Witschey WR, Zsido GA, Koomalsingh K, Kondo N, Minakawa M, Shuto T, McGarvey JR et al (2012) In vivo chronic myocardial infarction characterization by spin locked cardiovascular magnetic resonance. J Cardiovasc Magn Reson 15:14–37

    Google Scholar 

  26. Makowski MR, Wiethoff AJ, Jansen CH, Uribe S, Parish V, Schuster A, Botnar RM et al (2012) Single breath-hold assessment of cardiac function using an accelerated 3D single breath-hold acquisition technique—comparison of an intravascular and extravascular contrast agent. J Cardiovasc Magn Reson 14:53. doi:10.1186/1532-429X-14-53

    Article  PubMed Central  PubMed  Google Scholar 

  27. Schuleri KH, Centola M, Evers KS, Zviman A, Evers R, Lima JA, Lardo AC (2012) Cardiovascular magnetic resonance characterization of peri-infarct zone remodeling following myocardial infarction. J Cardiovasc Magn Reson 14:24. doi:10.1186/1532-429X-14-24

    Article  PubMed Central  PubMed  Google Scholar 

  28. Scott PA, Morgan JM, Carroll N, Murday DC, Roberts PR, Peebles CR, Harden SP et al (2011) The extent of left ventricular scar quantified by late gadolinium enhancement MRI is associated with spontaneous ventricular arrhythmias in patients with coronary artery disease and implantable cardioverter-defibrillators. Circ Arrhythm Electrophysiol 4:324–330

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Medis Medical Imaging Systems for the strong research support and Martine Etienne-Mesubi, DrPH, for her assistance with the statistical analysis. We sincerely appreciate the administrative and research assistance of Travis L. Mann, MPH, BSRT, and Robert Altom.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timm Dickfeld.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesubi, O., Ego-Osuala, K., Jeudy, J. et al. Differences in quantitative assessment of myocardial scar and gray zone by LGE-CMR imaging using established gray zone protocols. Int J Cardiovasc Imaging 31, 359–368 (2015). https://doi.org/10.1007/s10554-014-0555-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0555-0

Keywords

Navigation