Combined coronary lumen and vessel wall magnetic resonance imaging with i-T2prep: influence of nitroglycerin

  • Tarique HussainEmail author
  • Markus Henningsson
  • Britta Butzbach
  • Dirk Lossnitzer
  • Gerald F. Greil
  • Marcelo E. Andia
  • Rene M. Botnar
Original Paper


It has been shown that sublingual nitroglycerin (NTG) improves image quality of coronary lumen magnetic resonance angiography. Our aim was to investigate the influence of NTG on coronary lumen and vessel wall image quality using a combined, single sequence approach (i-T2prep), which is able to image both within the known time frame of action of NTG. Ten healthy volunteers underwent right coronary artery lumen and vessel wall imaging using the i-T2prep sequence before and after administration of NTG. Image quality was assessed qualitatively and quantitatively. Diameter, length and wall thickness were also measured using dedicated semi-automatic software. NTG induced coronary vasodilatation (lumen diameter increased from 2.16 ± 0.32 to 2.52 ± 0.59 mm; p = 0.036). As a result, visualized lumen length (9.8 ± 2.6 to 11.4 ± 3.3 cm; p = 0.025) and qualitative lumen image quality (median 3 (interquartile range 2–3.25) vs. median 3 (interquartile range 3–4); p = 0.046) both improved. Vessel wall imaging also demonstrated a significant improvement in vessel wall sharpness after NTG (24.8 vs. 27.3 %; p = 0.036). This study demonstrates the benefits of NTG for coronary lumen and vessel wall imaging using a combined sequence, i-T2prep. The methodology described here has great potential for future pathophysiological studies.


Nitroglycerin Coronary artery disease Magnetic resonance imaging 



The authors acknowledge financial support from the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust. The MRI scanner is partly supported by Philips Healthcare.

Conflict of interest

None to declare.


  1. 1.
    Jin H, Zeng MS, Ge MY, Ma JY, Chen CZ, Shen JZ, Li RC (2010) Influence of applying nitroglycerin in whole-heart free-breathing 3D coronary MR angiography. AJR Am J Roentgenol 194(4):927–932. doi: 10.2214/AJR.09.3330 PubMedCrossRefGoogle Scholar
  2. 2.
    Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, Langerak SE, Weber OM, Pedersen EM, Schmidt M, Botnar RM, Manning WJ (2001) Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 345(26):1863–1869. doi: 10.1056/NEJMoa010866.345/26/1863 PubMedCrossRefGoogle Scholar
  3. 3.
    Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk W, Knudtson M, Dada M, Casperson P, Harris CL, Spertus JA, Shaw L, Chaitman BR, Mancini GB, Berman DS, Gau G, Weintraub WS (2007) The evolving pattern of symptomatic coronary artery disease in the United States and Canada: baseline characteristics of the Clinical Outcomes Utilizing Revascularization and Aggressive DruG Evaluation (COURAGE) trial. Am J Cardiol 99(2):208–212. doi: 10.1016/j.amjcard.2006.07.082 PubMedCrossRefGoogle Scholar
  4. 4.
    Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316(22):1371–1375. doi: 10.1056/NEJM198705283162204 PubMedCrossRefGoogle Scholar
  5. 5.
    Botnar RM, Kim WY, Bornert P, Stuber M, Spuentrup E, Manning WJ (2001) 3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition. Magn Reson Med 46(5):848–854. doi: 10.1002/mrm.1268 PubMedCrossRefGoogle Scholar
  6. 6.
    Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ (2000) Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 102(21):2582–2587PubMedCrossRefGoogle Scholar
  7. 7.
    Kim WY, Stuber M, Bornert P, Kissinger KV, Manning WJ, Botnar RM (2002) Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 106(3):296–299PubMedCrossRefGoogle Scholar
  8. 8.
    Armstrong PW, Armstrong JA, Marks GS (1979) Blood levels after sublingual nitroglycerin. Circulation 59(3):585–588PubMedCrossRefGoogle Scholar
  9. 9.
    Andia ME, Henningsson M, Hussain T, Phinikaridou A, Protti A, Greil G, Botnar RM (2013) Flow-independent 3D whole-heart vessel wall imaging using an interleaved T2-preparation acquisition. Magn Reson Med 69(1):150–157Google Scholar
  10. 10.
    Ehman RL, Felmlee JP (1989) Adaptive technique for high-definition MR imaging of moving structures. Radiology 173(1):255–263PubMedCrossRefGoogle Scholar
  11. 11.
    Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ (1999) Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology 212(2):579–587PubMedCrossRefGoogle Scholar
  12. 12.
    Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ (1999) Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation 99(24):3139–3148PubMedCrossRefGoogle Scholar
  13. 13.
    Etienne A, Botnar RM, Van Muiswinkel AM, Boesiger P, Manning WJ, Stuber M (2002) “Soap-Bubble” visualization and quantitative analysis of 3D coronary magnetic resonance angiograms. Magn Reson Med 48(4):658–666. doi: 10.1002/mrm.10253 PubMedCrossRefGoogle Scholar
  14. 14.
    Deriche R (1990) Fast algorithms for low-level vision. IEEE transactions on pattern analysis and machine intelligence. PAMI 12:78–87CrossRefGoogle Scholar
  15. 15.
    McConnell MV, Khasgiwala VC, Savord BJ, Chen MH, Chuang ML, Edelman RR, Manning WJ (1997) Comparison of respiratory suppression methods and navigator locations for MR coronary angiography. AJR Am J Roentgenol 168(5):1369–1375PubMedCrossRefGoogle Scholar
  16. 16.
    Kim WY, Astrup AS, Stuber M, Tarnow L, Falk E, Botnar RM, Simonsen C, Pietraszek L, Hansen PR, Manning WJ, Andersen NT, Parving HH (2007) Subclinical coronary and aortic atherosclerosis detected by magnetic resonance imaging in type 1 diabetes with and without diabetic nephropathy. Circulation 115(2):228–235. doi: 10.1161/CIRCULATIONAHA.106.633339 PubMedCrossRefGoogle Scholar
  17. 17.
    Terashima M, Nguyen PK, Rubin GD, Iribarren C, Courtney BK, Go AS, Fortmann SP, McConnell MV (2008) Impaired coronary vasodilation by magnetic resonance angiography is associated with advanced coronary artery calcification. JACC Cardiovascular imaging 1(2):167–173. doi: 10.1016/j.jcmg.2007.12.001 PubMedCrossRefGoogle Scholar
  18. 18.
    Reichek N, Alexander D (2008) Coronary artery function: out of the cath lab and into the magnet. JACC Cardiovascular imaging 1(2):174–176. doi: 10.1016/j.jcmg.2008.01.001 PubMedCrossRefGoogle Scholar
  19. 19.
    Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR Jr, Lerman A (2000) Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 101(9):948–954PubMedCrossRefGoogle Scholar
  20. 20.
    Terashima M, Meyer CH, Keeffe BG, Putz EJ, de la Pena-Almaguer E, Yang PC, Hu BS, Nishimura DG, McConnell MV (2005) Noninvasive assessment of coronary vasodilation using magnetic resonance angiography. J Am Coll Cardiol 45(1):104–110. doi: 10.1016/j.jacc.2004.09.057 PubMedCrossRefGoogle Scholar
  21. 21.
    Hu P, Chuang ML, Ngo LH, Stoeck CT, Peters DC, Kissinger KV, Goddu B, Goepfert LA, Manning WJ, Nezafat R (2010) Coronary MR imaging: effect of timing and dose of isosorbide dinitrate administration. Radiology 254(2):401–409. doi: 10.1148/radiol.09090483 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Tarique Hussain
    • 1
    Email author
  • Markus Henningsson
    • 1
  • Britta Butzbach
    • 1
  • Dirk Lossnitzer
    • 1
  • Gerald F. Greil
    • 1
  • Marcelo E. Andia
    • 1
    • 2
  • Rene M. Botnar
    • 1
    • 3
    • 4
    • 5
  1. 1.Division of Imaging Sciences and Biomedical Engineering, King’s College LondonSt Thomas’ HospitalLondonUK
  2. 2.Radiology Department, School of MedicinePontificia Universidad Catolica de ChileSantiagoChile
  3. 3.BHF Centre of ExcellenceKing’s College LondonLondonUK
  4. 4.Wellcome Trust and EPSRC Medical Engineering CenterKing’s College LondonLondonUK
  5. 5.NIHR Biomedical Research CentreKing’s College LondonLondonUK

Personalised recommendations