Skip to main content
Log in

Computed tomography for planning and postoperative imaging of transvenous mitral annuloplasty: first experience in an animal model

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To investigate the use of computed tomography (CT) to measure the mitral valve annulus size before implantation of a percutaneous mitral valve annuloplasty device in an animal trial. Seven domestic pigs underwent CT before and after implantation of a Cardioband™ (a percutaneously implantable mitral valve annuloplasty device) with a second-generation 128-section dual-source CT machine. Implantation of the Cardioband™ was performed in a standard fashion according to a protocol. Animals were sacrificed afterwards and the hearts explanted. The Cardioband™ was found to be adequately implanted in all animals, with no anchor dehiscence and no damage of the circumflex artery (CX) or the coronary sinus (CS). The correct length of the band as chosen according to the length of the posterior mitral annulus measured in CT before implantation was confirmed in gross examination in all animals. The device did not result in a metal artifact-related degradation of image quality. The closest distance from the closest anchor to the CX was 2.1 ± 0.7 mm in diastole and 1.6 ± 0.5 mm systole. Mitral annulus distance to the CS was 6.4 ± 1.3 mm in diastole and 7.7 ± 1.1 mm in systole. CT visualization and measurement of the mitral valve annulus dimensions is feasible and can become the imaging method of choice for procedure planning of Cardioband™ implantations or other transcatheter mitral annuloplasty devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CT:

Computed tomography

CX:

Circumflex artery

ECG:

Electrocardiogram

FoV:

Field of view

ICE:

Intracardiac echocardiography

IVC:

Inferior vena cava

MR:

Mitral valve regurgitation

MVR:

Mitral valve repair

SAFIRE:

Sinogram-affirmed iterative reconstruction

TAVI:

Transcatheter aortic valve implantation

TSchG:

Swiss Animal Protection Law

TSchV:

Swiss Animal Protection Act

References

  1. Seeburger J, Borger MA, Falk V, Kuntze T, Czesla M, Walther T, Doll N, Mohr FW (2008) Minimal invasive mitral valve repair for mitral regurgitation: results of 1339 consecutive patients. Eur J Cardiothorac Surg 34:760–765

    Article  PubMed  Google Scholar 

  2. Authors/Task Force Members, Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Barón-Esquivias G, Baumgartner H, Borger MA, Carrel TP, De Bonis M, Evangelista A, Falk V, Lung B, Lancellotti P, Pierard L, Price S, Schäfers HJ, Schuler G, Stepinska J, Swedberg K, Takkenberg J, Von Oppell UO, Windecker S, Zamorano JL, Zembala M (2012) Guidelines on the management of valvular heart disease (version 2012): The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur J Cardiothorac Surg 42:S1–S44

  3. Mirabel M, Iung B, Baron G, Messika-Zeitoun D, Détaint D, Vanoverschelde JL, Butchart EG, Ravaud P, Vahanian A (2007) What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur Heart J 28:1358–1365

    Article  PubMed  Google Scholar 

  4. Maisano F, Franzen O, Baldus S, Schäfer U, Hausleiter J, Butter C, Ussia GP, Sievert H, Richardt G, Widder JD, Moccetti T, Schillinger W (2013) Percutaneous mitral valve interventions in the real world: early and 1-year results from the ACCESS-EU, a prospective, multicenter, nonrandomized post-approval study of the MitraClip therapy in Europe. J Am Coll Cardiol 62:1052–1061

    Article  PubMed  Google Scholar 

  5. Harnek J, Webb JG, Kuck KH, Tschope C, Vahanian A, Buller CE, James SK, Tiefenbacher CP, Stone GW (2011) Transcatheter implantation of the MONARC coronary sinus device for mitral regurgitation: 1-year results from the EVOLUTION phase I study (Clinical Evaluation of the Edwards Lifesciences Percutaneous Mitral Annuloplasty System for the Treatment of Mitral Regurgitation). JACC Cardiovasc Interv 4:115–122

    Article  PubMed  Google Scholar 

  6. Schofer J, Siminiak T, Haude M, Herrman JP, Vainer J, Wu JC, Levy WC, Mauri L, Feldman T, Kwong RY, Kaye DM, Duffy SJ, Tübler T, Degen H, Brandt MC, Van Bibber R, Goldberg S, Reuter DG, Hoppe UC (2009) Percutaneous mitral annuloplasty for functional mitral regurgitation: results of the CARILLON Mitral Annuloplasty Device European Union Study. Circulation 120:326–333

    Article  PubMed Central  PubMed  Google Scholar 

  7. Goel R, Witzel T, Dickens D, Takeda PA, Heuser RR (2009) The QuantumCor device for treating mitral regurgitation: an animal study. Catheter Cardiovasc Interv 74:43–48

    Article  PubMed  Google Scholar 

  8. Maisano F, Vanermen H, Seeburger J, Mack M, Falk V, Denti P, Taramasso M, Alfieri O (2012) Direct access transcatheter mitral annuloplasty with a sutureless and adjustable device: preclinical experience. Eur J Cardiothorac Surg 42:524–529

    Article  PubMed  Google Scholar 

  9. Morsbach F, Desbiolles L, Plass A, Leschka S, Schmidt B, Falk V, Alkadhi H, Stolzmann P (2013) Stenosis quantification in coronary CT angiography: impact of an integrated circuit detector with iterative reconstruction. Invest Radiol 48:32–40

    Article  PubMed  Google Scholar 

  10. Baumueller S, Winklehner A, Karlo C, Goetti R, Flohr T, Russi EW, Frauenfelder T, Alkadhi H (2012) Low-dose CT of the lung: potential value of iterative reconstructions. Eur Radiol 22:2597–2606

    Article  PubMed  Google Scholar 

  11. Ho SY (2002) Anatomy of the mitral valve. Heart 88(Suppl 4):5–10

    Google Scholar 

  12. Gordic S, Nguyen-Kim TD, Manka R, Sündermann S, Frauenfelder T, Maisano F, Falk V, Alkadhi H (2014) Sizing the mitral annulus in healthy subjects and patients with mitral regurgitation: 2D versus 3D measurements from cardiac CT. Int J Cardiovasc Imaging 30(2):389–398. doi:10.1007/s10554-013-0341-4

    Article  PubMed  Google Scholar 

  13. García-Orta R, Moreno E, Vidal M, Ruiz-López F, Oyonarte JM, Lara J, Moreno T, García-Fernándezd MA, Azpitarte J (2007) Three-dimensional versus two-dimensional transesophageal echocardiography in mitral valve repair. J Am Soc Echocardiogr 20:4–12

    Article  PubMed  Google Scholar 

  14. Swaans MJ, Van den Branden BJL, Van der Heyden JAS, Post MC, Rensing BJ, Eefting FD, Plokker HW, Jaarsma W (2009) Three-dimensional transoesophageal echocardiography in a patient undergoing percutaneous mitral valve repair using the edge-to-edge clip technique. Eur J Echocardiogr 10:982–983

    Article  CAS  PubMed  Google Scholar 

  15. Hien MD, Großgasteiger M, Weymann A, Rauch H, Rosendal C (2013) Reproducibility in echocardiographic two- and three-dimensional mitral valve assessment. Echocardiography. doi:10.1111/echo.12365

  16. Delgado V, Tops LF, Schuijf JD, de Roos A, Brugada J, Schalij MJ, Thomas JD, Bax JJ (2009) Assessment of mitral valve anatomy and geometry with multislice computed tomography. JACC Cardiovas Imaging 2:556–565

    Article  Google Scholar 

  17. Sündermann SH, Gessat M, Cesarovic N, Frauenfelder T, Biaggi P, Bettex D, Falk V, Jacobs S (2013) Implantation of personalized, biocompatible mitral annuloplasty rings: feasibility study in an animal model. Interact CardioVasc Thorac Surg 16:417–422

    Article  PubMed Central  PubMed  Google Scholar 

  18. Wang Q, Sun W (2013) Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann Biomed Eng 41:142–153

    Article  PubMed  Google Scholar 

  19. Alkadhi H, Desbiolles L, Stolzmann P, Leschka S, Scheffel H, Plass A, Schertler T, Trindade PT, Genoni M, Cattin P, Marincek B, Frauenfelder T (2009) Mitral annular shape, size, and motion in normals and in patients with cardiomyopathy: evaluation with computed tomography. Invest Radiol 44:218–225

    Article  PubMed  Google Scholar 

  20. Binder RK, Webb JG, Willson AB, Urena M, Hansson NC, Norgaard BL, Pibarot P, Barbanti M, Larose E, Freeman M, Dumont E, Thompson C, Wheeler M, Moss RR, Yang TH, Pasian S, Hague CJ, Nguyen G, Raju R, Toggweiler S, Min JK, Wood DA, Rodés-Cabau J, Leipsic J (2013) The impact of integration of a multidetector computed tomography annulus area sizing algorithm on outcomes of transcatheter aortic valve replacement: a prospective, multicenter, controlled trial. J Am Coll Cardiol 62:431–438

    Article  PubMed  Google Scholar 

  21. De Backer O, Piazza N, Banai S, Lutter G, Maisano F, Herrmann HC, Franzen OW, Søndergaard L (2014) Percutaneous transcatheter mitral valve replacement: an overview of devices in preclinical and early clinical evaluation. Circ Cardiovasc Interv 7:400–409

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We want to thank Tal Sheps (Valtech Cardio) for his support and valuable input in this study.

Conflict of interest

Volkmar Falk and Francesco Maisano are consultants for Valtech Cardio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Alkadhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sündermann, S.H., Gordic, S., Manka, R. et al. Computed tomography for planning and postoperative imaging of transvenous mitral annuloplasty: first experience in an animal model. Int J Cardiovasc Imaging 31, 135–142 (2015). https://doi.org/10.1007/s10554-014-0516-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0516-7

Keywords

Navigation