Skip to main content
Log in

Late gadolinium enhancement magnetic resonance imaging for the assessment of myocardial infarction: comparison of image quality between single and double doses of contrast agents

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To compare the image quality of late gadolinium enhancement (LGE) cardiac magnetic resonance imaging (CMR) using a single dose of gadolinium contrast agent versus the conventional double dose for assessing myocardial infarction. This retrospective study examined 37 patients with chronic myocardial infarction who underwent LGE CMR using both inversion recovery (IR)-turbo fast low-angle shot magnitude-reconstructed and phase-sensitive images with two different dosages of gadolinium contrast agent: a single dose of 0.1 mmol/kg gadolinium-DTPA in 17 patients and a double dose of 0.2 mmol/kg in 20 patients. The contrast-to-noise ratio (CNR) and visual conspicuity between infarct and normal myocardium (CNRinfarct-normal, conspicuityinfarct-normal) and between infarct and left ventricular cavity (CNRinfarct-LVC, conspicuityinfarct-LVC) were compared. Interobserver agreement for the maximal transmural extent of infarction was also evaluated. CNRinfarct-normal was significantly higher with double-dose gadolinium contrast agent (15.5 ± 20.7 vs. 40.4 ± 16.1 in magnitude images and 9.5 ± 2.8 vs. 11.2 ± 2.7 in phase-sensitive images, P < 0.001) while conspicuityinfarct-normal showed no significant difference between the two groups (P > 0.05). Both CNRinfarct-LVC (7.7 ± 10.7 vs. −6.6 ± 19.0 in magnitude images and 4.1 ± 2.3 vs. −0.4 ± 4.1 in phase-sensitive images, P < 0.05) and conspicuityinfarct-LVC were significantly better with single-dose gadolinium contrast. Interobserver agreement for assessing the transmural extent of infarction was moderate in both groups: 0.591 for single-dose and 0.472 for double-dose. LGE CMR using a single dose of gadolinium contrast agent showed significantly better contrast between infarcted myocardium and left ventricular cavity lumen without a significant decrease in visual contrast between infarcted myocardium and normal myocardium, compared to a double dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CMR:

Cardiac magnetic resonance imaging

CNR:

Contrast-to-noise ratio

IR:

Inversion recovery

LGE:

Late gadolinium enhancement

LV:

Left ventricle

ROI:

Region of interest

SD:

Standard deviation

SI:

Signal intensity

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2013) Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation 127(1):e6–e245

  2. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343(20):1445–1453

    Article  CAS  PubMed  Google Scholar 

  3. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100(19):1992–2002

    Article  CAS  PubMed  Google Scholar 

  4. Fieno DS, Kim RJ, Chen EL, Lomasney JW, Klocke FJ, Judd RM (2000) Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 36(6):1985–1991

    Article  CAS  PubMed  Google Scholar 

  5. Nacif MS, Arai AE, Lima JA, Bluemke DA (2012) Gadolinium-enhanced cardiovascular magnetic resonance: administered dose in relationship to United States Food and Drug Administration (FDA) guidelines. J Cardiovasc Magn Reson 14:18

    PubMed Central  PubMed  Google Scholar 

  6. Kim RJ, Shah DJ, Judd RM (2003) How we perform delayed enhancement imaging. J Cardiovasc Magn Reson 5(3):505–514

    Article  PubMed  Google Scholar 

  7. Kanal E, Barkovich AJ, Bell C, Borgstede JP, Bradley WG Jr, Froelich JW, Gilk T, Gimbel JR, Gosbee J, Kuhni-Kaminski E, Lester JW Jr, Nyenhuis J, Parag Y, Schaefer DJ, Sebek-Scoumis EA, Weinreb J, Zaremba LA, Wilcox P, Lucey L, Sass N, Safety ACRBRPoM (2007) ACR guidance document for safe MR practices: 2007. AJR Am J Roentgenol 188(6):1447–1474

    Article  PubMed  Google Scholar 

  8. Abujudeh HH, Kaewlai R, Kagan A, Chibnik LB, Nazarian RM, High WA, Kay J (2009) Nephrogenic systemic fibrosis after gadopentetate dimeglumine exposure: case series of 36 patients. Radiology 253(1):81–89

    Article  PubMed  Google Scholar 

  9. Wagner A, Mahrholdt H, Thomson L, Hager S, Meinhardt G, Rehwald W, Parker M, Shah D, Sechtem U, Kim RJ, Judd RM (2006) Effects of time, dose, and inversion time for acute myocardial infarct size measurements based on magnetic resonance imaging-delayed contrast enhancement. J Am Coll Cardiol 47(10):2027–2033

    Article  PubMed  Google Scholar 

  10. Durmus T, Schilling R, Doeblin P, Huppertz A, Hamm B, Taupitz M, Wagner M (2012) Gadobutrol for magnetic resonance imaging of chronic myocardial infarction: intraindividual comparison with gadopentetate dimeglumine. Invest Radiol 47(3):183–188

    PubMed  Google Scholar 

  11. Petersen SE, Mohrs OK, Horstick G, Oberholzer K, Abegunewardene N, Ruetzel K, Selvanayagam JB, Robson MD, Neubauer S, Thelen M, Meyer J, Kreitner KF (2004) Influence of contrast agent dose and image acquisition timing on the quantitative determination of nonviable myocardial tissue using delayed contrast-enhanced magnetic resonance imaging. J Cardiovasc Magn Reson 6(2):541–548

    Article  PubMed  Google Scholar 

  12. Fleiss JL (1981) Statistical methods for rates and proportions, 2nd edn. Wiley, New York, NY

    Google Scholar 

  13. Kramer MS, Feinstein AR (1981) Clinical biostatistics. LIV. The biostatistics of concordance. Clin Pharmacol Ther 29(1):111–123

    Article  CAS  PubMed  Google Scholar 

  14. Braunwald E, Rutherford JD (1986) Reversible ischemic left ventricular dysfunction: evidence for the “hibernating myocardium”. J Am Coll Cardiol 8(6):1467–1470

    Article  CAS  PubMed  Google Scholar 

  15. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, Schelbert H (1986) Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 314(14):884–888

    Article  CAS  PubMed  Google Scholar 

  16. Perrone-Filardi P, Pace L, Prastaro M, Squame F, Betocchi S, Soricelli A, Piscione F, Indolfi C, Crisci T, Salvatore M, Chiariello M (1996) Assessment of myocardial viability in patients with chronic coronary artery disease. Rest-4-h–24-h 201Tl tomography versus dobutamine echocardiography. Circulation 94(11):2712–2719

    Article  CAS  PubMed  Google Scholar 

  17. Pagley PR, Beller GA, Watson DD, Gimple LW, Ragosta M (1997) Improved outcome after coronary bypass surgery in patients with ischemic cardiomyopathy and residual myocardial viability. Circulation 96(3):793–800

    Article  CAS  PubMed  Google Scholar 

  18. Chaudhry FA, Tauke JT, Alessandrini RS, Vardi G, Parker MA, Bonow RO (1999) Prognostic implications of myocardial contractile reserve in patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol 34(3):730–738

    Article  CAS  PubMed  Google Scholar 

  19. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB (1977) The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56(5):786–794

    Article  CAS  PubMed  Google Scholar 

  20. Hillenbrand HB, Kim RJ, Parker MA, Fieno DS, Judd RM (2000) Early assessment of myocardial salvage by contrast-enhanced magnetic resonance imaging. Circulation 102(14):1678–1683

    Article  CAS  PubMed  Google Scholar 

  21. Kellman P, Arai AE, McVeigh ER, Aletras AH (2002) Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 47(2):372–383

    Article  PubMed Central  PubMed  Google Scholar 

  22. Ingkanisorn WP, Rhoads KL, Aletras AH, Kellman P, Arai AE (2004) Gadolinium delayed enhancement cardiovascular magnetic resonance correlates with clinical measures of myocardial infarction. J Am Coll Cardiol 43(12):2253–2259

    Article  PubMed  Google Scholar 

  23. Kim RJ, Albert TS, Wible JH, Elliott MD, Allen JC, Lee JC, Parker M, Napoli A, Judd RM, Gadoversetamide Myocardial Infarction Imaging I (2008) Performance of delayed-enhancement magnetic resonance imaging with gadoversetamide contrast for the detection and assessment of myocardial infarction: an international, multicenter, double-blinded, randomized trial. Circulation 117(5):629–637

    Article  PubMed  Google Scholar 

  24. Setser RM, Chung YC, Weaver JA, Stillman AE, Simonetti OP, White RD (2005) Effect of inversion time on delayed-enhancement magnetic resonance imaging with and without phase-sensitive reconstruction. J Magn Reson Imaging 21(5):650–655

    Article  PubMed  Google Scholar 

  25. Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM, Finn JP, Judd RM (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218(1):215–223

    Article  CAS  PubMed  Google Scholar 

  26. Gupta A, Lee VS, Chung YC, Babb JS, Simonetti OP (2004) Myocardial infarction: optimization of inversion times at delayed contrast-enhanced MR imaging. Radiology 233(3):921–926

    Article  PubMed  Google Scholar 

  27. Huber AM, Schoenberg SO, Hayes C, Spannagl B, Engelmann MG, Franz WM, Reiser MF (2005) Phase-sensitive inversion-recovery MR imaging in the detection of myocardial infarction. Radiology 237(3):854–860

    Article  PubMed  Google Scholar 

  28. Huber A, Schoenberg SO, Spannagl B, Rieber J, Erhard I, Klauss V, Reiser MF (2006) Single-shot inversion recovery TrueFISP for assessment of myocardial infarction. AJR Am J Roentgenol 186(3):627–633

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the SNUH Research Fund (No. 04-2012-0820).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Ah Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.K., Park, EA., Lee, W. et al. Late gadolinium enhancement magnetic resonance imaging for the assessment of myocardial infarction: comparison of image quality between single and double doses of contrast agents. Int J Cardiovasc Imaging 30 (Suppl 2), 129–135 (2014). https://doi.org/10.1007/s10554-014-0505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0505-x

Keywords

Navigation