Skip to main content

Advertisement

Log in

Impact of hemodialysis, left ventricular mass and FGF-23 on myocardial mechanics in end-stage renal disease: a three-dimensional speckle tracking study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Left ventricular (LV) hypertrophy and one of its inducers, the fibroblast growth factor-23 (FGF-23) were found to be associated with unfavourable outcome in end-stage renal disease (ESRD) patients. We sought to investigate the influence of hemodialysis (HD), increased LV mass and FGF-23 on LV mechanics using three-dimensional (3D) speckle tracking echocardiography. Forty-four ESRD patients on maintenance HD were examined just before and immediately after HD, and were compared to 44 normal controls (NC). Transthoracic 3D recordings were obtained using multi-beat reconstruction from 6 consecutive cardiac cycles. LV mass index (LVMi) was evaluated and 3D speckle tracking analysis was performed to calculate global longitudinal (GLS), circumferential (GCS), area (GAS) and radial (GRS) peak systolic strain. Serum FGF-23 levels were also measured. Strain values improved in all directions after HD [pre- vs. post-HD; GLS: −20(3) vs. −21(6), GCS: −20(4) vs. −22(7), GAS: −33(5) vs. −35(10), GRS: 50(12) vs. 53.5(20)  %, all p < 0.01]. LVMi was remarkably increased in our patients [ESRD vs. NC; 136(46) vs. 71(8) g/m2, p < 0.001]. Elevated FGF-23 levels were associated with increased LV mass (ρ = 0.581, p < 0.001). LVMi was inversely related to pre-HD GCS (ρ = 0.626, p < 0.001) and post-HD GCS (ρ = 0.761, p < 0.001), GAS (ρ = 0.534, p < 0.05) and GRS (ρ = −0.639, p < 0.01). Serum FGF-23 levels correlated with post-HD GAS (ρ = 0.513, p < 0.01) and GRS (ρ = −0.512, p < 0.05). HD treatment results in immediate improvement in all strain directions. Besides inducing LV hypertrophy, FGF-23 may play a role in the deterioration of LV mechanics in patients with ESRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shlipak MG, Fried LF, Cushman M, Manolio TA, Peterson D, Stehman-Breen C, Bleyer A, Newman A, Siscovick D, Psaty B (2005) Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors. JAMA 293(14):1737–1745. doi:10.1001/jama.293.14.1737

    Article  PubMed  CAS  Google Scholar 

  2. Taddei S, Nami R, Bruno RM, Quatrini I, Nuti R (2011) Hypertension, left ventricular hypertrophy and chronic kidney disease. Heart Fail Rev 16(6):615–620. doi:10.1007/s10741-010-9197-z

    Article  PubMed  Google Scholar 

  3. Moody WE, Edwards NC, Chue CD, Ferro CJ, Townend JN (2013) Arterial disease in chronic kidney disease. Heart 99(6):365–372. doi:10.1136/heartjnl-2012-302818

    Article  PubMed  CAS  Google Scholar 

  4. Chue CD, Edwards NC, Moody WE, Steeds RP, Townend JN, Ferro CJ (2012) Serum phosphate is associated with left ventricular mass in patients with chronic kidney disease: a cardiac magnetic resonance study. Heart 98(3):219–224. doi:10.1136/heartjnl-2011-300570

    Article  PubMed  CAS  Google Scholar 

  5. Heine GH, Seiler S, Fliser D (2012) FGF-23: the rise of a novel cardiovascular risk marker in CKD. Nephrol Dial Transplant 27(8):3072–3081. doi:10.1093/ndt/gfs259

    Article  PubMed  CAS  Google Scholar 

  6. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutierrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro OM, Kusek JW, Keane MG, Wolf M (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121(11):4393–4408. doi:10.1172/JCI46122

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Isakova T (2012) Fibroblast growth factor 23 and adverse clinical outcomes in chronic kidney disease. Curr Opin Nephrol Hypertens 21(3):334–340. doi:10.1097/MNH.0b013e328351a391

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Bansal N, Keane M, Delafontaine P, Dries D, Foster E, Gadegbeku CA, Go AS, Hamm LL, Kusek JW, Ojo AO, Rahman M, Tao K, Wright JT, Xie D, Hsu CY, CRIC Study Investigators (2013) A longitudinal study of left ventricular function and structure from CKD to ESRD: the CRIC study. Clin J Am Soc Nephrol 8(3):355–362. doi:10.2215/CJN.06020612

    Article  PubMed  PubMed Central  Google Scholar 

  9. Badano LP, Boccalini F, Muraru D, Bianco LD, Peluso D, Bellu R, Zoppellaro G, Iliceto S (2012) Current clinical applications of transthoracic three-dimensional echocardiography. J Cardiovasc Ultrasound 20(1):1–22. doi:10.4250/jcu.2012.20.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317(17):1098. doi:10.1056/NEJM198710223171717

    PubMed  CAS  Google Scholar 

  11. Badano LP (2013) Defining normative values for 3D LV volumes: the devil is in the details. JACC Cardiovasc Imaging 6(4):530. doi:10.1016/j.jcmg.2013.01.008

    Article  PubMed  Google Scholar 

  12. Muraru D, Badano LP, Piccoli G, Gianfagna P, Del Mestre L, Ermacora D, Proclemer A (2010) Validation of a novel automated border-detection algorithm for rapid and accurate quantitation of left ventricular volumes based on three-dimensional echocardiography. Eur J Echocardiogr 11(4):359–368. doi:10.1093/ejechocard/jep217

    Article  PubMed  Google Scholar 

  13. Muraru D, Badano LP, Peluso D, Dal Bianco L, Casablanca S, Kocabay G, Zoppellaro G, Iliceto S (2013) Comprehensive analysis of left ventricular geometry and function by three-dimensional echocardiography in healthy adults. J Am Soc Echocardiogr 26(6):618–628. doi:10.1016/j.echo.2013.03.014

    Article  PubMed  Google Scholar 

  14. Alhaj E, Alhaj N, Rahman I, Niazi TO, Berkowitz R, Klapholz M (2013) Uremic cardiomyopathy: an underdiagnosed disease. Congest Heart Fail. doi:10.1111/chf.12030

    PubMed  Google Scholar 

  15. Thorstensen A, Dalen H, Hala P, Kiss G, D’Hooge J, Torp H, Stoylen A, Amundsen B (2013) Three-dimensional echocardiography in the evaluation of global and regional function in patients with recent myocardial infarction: a comparison with magnetic resonance imaging. Echocardiography 30(6):682–692. doi:10.1111/echo.12115

    Article  PubMed  Google Scholar 

  16. Hayat D, Kloeckner M, Nahum J, Ecochard-Dugelay E, Dubois-Rande JL, Jean-Francois D, Gueret P, Lim P (2012) Comparison of real-time three-dimensional speckle tracking to magnetic resonance imaging in patients with coronary heart disease. Am J Cardiol 109(2):180–186. doi:10.1016/j.amjcard.2011.08.030

    Article  PubMed  Google Scholar 

  17. Kovacs A, Apor A, Nagy A, Vago H, Toth A, Nagy AI, Kovats T, Sax B, Szeplaki G, Becker D, Merkely B (2014) Left ventricular untwisting in athlete’s heart: key role in early diastolic filling? Int J Sports Med 35(3):259–264. doi:10.1055/s-0033-1349076

    PubMed  CAS  Google Scholar 

  18. Bansal M, Sengupta PP (2013) Longitudinal and circumferential strain in patients with regional LV dysfunction. Curr Cardiol Rep 15(3):339. doi:10.1007/s11886-012-0339-x

    Article  PubMed  Google Scholar 

  19. Wang H, Liu J, Yao XD, Li J, Yang Y, Cao TS, Yang B (2012) Multidirectional myocardial systolic function in hemodialysis patients with preserved left ventricular ejection fraction and different left ventricular geometry. Nephrol Dial Transplant 27(12):4422–4429. doi:10.1093/ndt/gfs090

    Article  PubMed  Google Scholar 

  20. Yan P, Li H, Hao C, Shi H, Gu Y, Huang G, Chen J (2011) 2D-speckle tracking echocardiography contributes to early identification of impaired left ventricular myocardial function in patients with chronic kidney disease. Nephron Clin Pract 118(3):c232–c240. doi:10.1159/000321383

    Article  PubMed  Google Scholar 

  21. Gulel O, Soylu K, Yuksel S, Karaoglanoglu M, Cengiz K, Dilek M, Hamiseyev C, Kale A, Arik N (2008) Evidence of left ventricular systolic and diastolic dysfunction by color tissue Doppler imaging despite normal ejection fraction in patients on chronic hemodialysis program. Echocardiography 25(6):569–574

    Article  PubMed  Google Scholar 

  22. Liu YW, Su CT, Huang YY, Yang CS, Huang JW, Yang MT, Chen JH, Tsai WC (2011) Left ventricular systolic strain in chronic kidney disease and hemodialysis patients. Am J Nephrol 33(1):84–90. doi:10.1159/000322709

    Article  PubMed  CAS  Google Scholar 

  23. Chan C, Floras JS, Miller JA, Pierratos A (2002) Improvement in ejection fraction by nocturnal haemodialysis in end-stage renal failure patients with coexisting heart failure. Nephrol Dial Transplant 17(8):1518–1521

    Article  PubMed  Google Scholar 

  24. Siedlecki A, Foushee M, Curtis JJ, Gaston RS, Perry G, Iskandrian AE, de Mattos AM (2007) The impact of left ventricular systolic dysfunction on survival after renal transplantation. Transplantation 84(12):1610–1617. doi:10.1097/01.tp.0000295748.42884.97

    Article  PubMed  Google Scholar 

  25. de Mattos AM, Siedlecki A, Gaston RS, Perry GJ, Julian BA, Kew CE II, Deierhoi MH, Young C, Curtis JJ, Iskandrian AE (2008) Systolic dysfunction portends increased mortality among those waiting for renal transplant. J Am Soc Nephrol 19(6):1191–1196. doi:10.1681/ASN.2007040503

    Article  PubMed  PubMed Central  Google Scholar 

  26. Altekin RE, Kucuk M, Yanikoglu A, Karakas MS, Er A, Ozel D, Ermis C, Demir I (2012) Evaluation of the left ventricular regional function using two-dimensional speckle tracking echocardiography in patients with end-stage renal disease with preserved left ventricular ejection fraction. Acta Cardiol 67(6):681–691

    PubMed  Google Scholar 

  27. Galderisi M, Esposito R, Schiano-Lomoriello V, Santoro A, Ippolito R, Schiattarella P, Strazzullo P, de Simone G (2012) Correlates of global area strain in native hypertensive patients: a three-dimensional speckle-tracking echocardiography study. Eur Heart J Cardiovasc Imaging 13(9):730–738. doi:10.1093/ehjci/jes026

    Article  PubMed  Google Scholar 

  28. Wald R, Goldstein MB, Wald RM, Harel Z, Kirpalani A, Perl J, Yuen DA, Wolf MS, Yan AT (2014) Correlates of left ventricular mass in chronic hemodialysis recipients. Int J Cardiovasc Imaging 30(2):349–356. doi:10.1007/s10554-013-0337-0

    Article  PubMed  Google Scholar 

  29. Smith K, deFilippi C, Isakova T, Gutierrez OM, Laliberte K, Seliger S, Kelley W, Duh SH, Hise M, Christenson R, Wolf M, Januzzi J (2013) Fibroblast growth factor 23, high-sensitivity cardiac troponin, and left ventricular hypertrophy in CKD. Am J Kidney Dis 61(1):67–73. doi:10.1053/j.ajkd.2012.06.022

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Touchberry CD, Green TM, Tchikrizov V, Mannix JE, Mao TF, Carney BW, Girgis M, Vincent RJ, Wetmore LA, Dawn B, Bonewald LF, Stubbs JR, Wacker MJ (2013) FGF23 is a novel regulator of intracellular calcium and cardiac contractility in addition to cardiac hypertrophy. Am J Physiol Endocrinol Metab 304(8):E863–E873. doi:10.1152/ajpendo.00596.2012

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Sharma S, Joseph J, Chonchol M, Kaufman JS, Cheung AK, Rafeq Z, Smits G, Kendrick J (2013) Higher fibroblast growth factor-23 concentrations associate with left ventricular systolic dysfunction in dialysis patients. Clin Nephrol. doi:10.5414/CN107991

    PubMed  Google Scholar 

  32. Ernande L, Bergerot C, Rietzschel ER, De Buyzere ML, Thibault H, Pignonblanc PG, Croisille P, Ovize M, Groisne L, Moulin P, Gillebert TC, Derumeaux G (2011) Diastolic dysfunction in patients with type 2 diabetes mellitus: is it really the first marker of diabetic cardiomyopathy? J Am Soc Echocardiogr 24(11):1268–1275. doi:10.1016/j.echo.2011.07.017

    Article  PubMed  Google Scholar 

  33. Assa S, Hummel YM, Voors AA, Kuipers J, Westerhuis R, de Jong PE, Franssen CF (2012) Hemodialysis-induced regional left ventricular systolic dysfunction: prevalence, patient and dialysis treatment-related factors, and prognostic significance. Clin J Am Soc Nephrol 7(10):1615–1623. doi:10.2215/CJN.00850112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Dou Y, Zhu F, Kotanko P (2012) Assessment of extracellular fluid volume and fluid status in hemodialysis patients: current status and technical advances. Semin Dial 25(4):377–387. doi:10.1111/j.1525-139X.2012.01095.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are grateful to GE Healthcare for equipment support and to Fresenius Medical Care for allowing our study. This work was supported by the Hungarian Scientific Research Fund (Grant Number 105555).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Kovács.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovács, A., Tapolyai, M., Celeng, C. et al. Impact of hemodialysis, left ventricular mass and FGF-23 on myocardial mechanics in end-stage renal disease: a three-dimensional speckle tracking study. Int J Cardiovasc Imaging 30, 1331–1337 (2014). https://doi.org/10.1007/s10554-014-0480-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0480-2

Keywords

Navigation