Skip to main content
Log in

Coronary artery calcium quantification from contrast enhanced CT using gemstone spectral imaging and material decomposition

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To explore the feasibility of coronary artery calcium (CAC) measurement from low-dose contrast enhanced coronary CT angiography (CCTA) as this may obviate the need for an unenhanced CT scan. 52 patients underwent unenhanced cardiac CT and prospectively ECG triggered contrast enhanced CCTA (Discovery HD 750, GE Healthcare, Milwaukee, WI, USA). The latter was acquired in single-source dual-energy mode [gemstone spectral imaging (GSI)]. Virtual unenhanced images were generated from GSI CCTA by monochromatic image reconstruction of 70 keV allowing selective iodine material suppression. CAC scores from virtual unenhanced CT were compared to standard unenhanced CT including a linear regression model. After iodine subtraction from the contrast enhanced CCTA the attenuation in the ascending aorta decreased significantly from 359 ± 61 to 54 ± 8 HU (P < 0.001), the latter comparing well to the value of 64 ± 55 HU found in the standard unenhanced CT (P = ns) confirming successful iodine subtraction. After introducing linear regression formula the mean values for Agatston, Volume and Mass scores of virtual unenhanced CT were 187 ± 321, 72 ± 114 mm3, and 27 ± 46 mg/cm3, comparing well to the values from standard unenhanced CT (187 ± 309, 72 ± 110 mm3, and 27 ± 45 mg/cm3) yielding an excellent correlation (r = 0.96, r = 0.96, r = 0.92; P < 0.001). Mean estimated radiation dose revealed 0.83 ± 0.02 mSv from the unenhanced CT and 1.70 ± 0.53 mSv from the contrast enhanced CCTA. Single-source dual-energy scanning with GSI allows CAC quantification from low dose contrast enhanced CCTA by virtual iodine contrast subtraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schroeder S, Achenbach S, Bengel F, Burgstahler C, Cademartiri F, de Feyter P et al (2008) Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J 29(4):531–556

    Article  PubMed  Google Scholar 

  2. Papaefthymiou H, Athanasopoulos D, Papatheodorou G, Iatrou M, Geraga M, Christodoulou D et al (2013) Uranium and other natural radionuclides in the sediments of a Mediterranean fjord-like embayment, Amvrakikos Gulf (Ionian Sea), Greece. J Environ Radioact 122:43–54

    Article  PubMed  CAS  Google Scholar 

  3. Uehara M, Takaoka H, Kobayashi Y, Funabashi N (2013) Diagnostic accuracy of 320-slice computed-tomography for detection of significant coronary artery stenosis in patients with various heart rates and heart rhythms compared with conventional coronary-angiography. Int J Cardiol 167(3):809–815

    Article  PubMed  Google Scholar 

  4. Budoff MJ, Shaw LJ, Liu ST, Weinstein SR, Mosler TP, Tseng PH et al (2007) Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol 49(18):1860–1870

    Article  PubMed  Google Scholar 

  5. Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359(22):2324–2336

    Article  PubMed  CAS  Google Scholar 

  6. Abbara S, Arbab-Zadeh A, Callister TQ, Desai MY, Mamuya W, Thomson L et al (2009) SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 3(3):190–204

    Article  PubMed  Google Scholar 

  7. Leschka S, Scheffel H, Desbiolles L, Plass A, Gaemperli O, Stolzmann P et al (2008) Combining dual-source computed tomography coronary angiography and calcium scoring: added value for the assessment of coronary artery disease. Heart 94(9):1154–1161

    Article  PubMed  CAS  Google Scholar 

  8. van Werkhoven JM, Schuijf JD, Gaemperli O, Jukema JW, Kroft LJ, Boersma E et al (2009) Incremental prognostic value of multi-slice computed tomography coronary angiography over coronary artery calcium scoring in patients with suspected coronary artery disease. Eur Heart J 30(21):2622–2629

    Article  PubMed  Google Scholar 

  9. Versteylen MO, Joosen IA, Winkens MH, Laufer EM, Snijder RJ, Wildberger JE et al (2013) Combined use of exercise electrocardiography, coronary calcium score and cardiac CT angiography for the prediction of major cardiovascular events in patients presenting with stable chest pain. Int J Cardiol 167(1):121–125

    Article  PubMed  Google Scholar 

  10. Ebersberger U, Eilot D, Goldenberg R, Lev A, Spears JR, Rowe GW et al (2013) Fully automated derivation of coronary artery calcium scores and cardiovascular risk assessment from contrast medium-enhanced coronary CT angiography studies. Eur Radiol 23(3):650–657

    Article  PubMed  Google Scholar 

  11. Schwarz F, Nance JW Jr, Ruzsics B, Bastarrika G, Sterzik A, Schoepf UJ (2012) Quantification of coronary artery calcium on the basis of dual-energy coronary CT angiography. Radiology 264(3):700–707

    Article  PubMed  Google Scholar 

  12. Schepis T, Gaemperli O, Koepfli P, Namdar M, Valenta I, Scheffel H et al (2007) Added value of coronary artery calcium score as an adjunct to gated SPECT for the evaluation of coronary artery disease in an intermediate-risk population. J Nucl Med 48(9):1424–1430

    Article  PubMed  Google Scholar 

  13. Schepis T, Gaemperli O, Koepfli P, Ruegg C, Burger C, Leschka S et al (2007) Use of coronary calcium score scans from stand-alone multislice computed tomography for attenuation correction of myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging 34(1):11–19

    Article  PubMed  Google Scholar 

  14. Burkhard N, Herzog BA, Husmann L, Pazhenkottil AP, Burger IA, Buechel RR et al (2010) Coronary calcium score scans for attenuation correction of quantitative PET/CT 13N-ammonia myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 37(3):517–521

    Article  PubMed  Google Scholar 

  15. Ghadri JR, Pazhenkottil AP, Nkoulou RN, Goetti R, Buechel RR, Husmann L et al (2011) Very high coronary calcium score unmasks obstructive coronary artery disease in patients with normal SPECT MPI. Heart 97(12):998–1003

    Article  PubMed  Google Scholar 

  16. Husmann L, Herzog BA, Gaemperli O, Tatsugami F, Burkhard N, Valenta I et al (2009) Diagnostic accuracy of computed tomography coronary angiography and evaluation of stress-only single-photon emission computed tomography/computed tomography hybrid imaging: comparison of prospective electrocardiogram-triggering vs. retrospective gating. Eur Heart J 30(5):600–607

    Article  PubMed  Google Scholar 

  17. Pazhenkottil AP, Husmann L, Buechel RR, Herzog BA, Nkoulou R, Burger IA et al (2010) Validation of a new contrast material protocol adapted to body surface area for optimized low-dose CT coronary angiography with prospective ECG-triggering. Int J Cardiovasc Imaging 26(5):591–597

    Article  PubMed  Google Scholar 

  18. Fuchs TA, Stehli J, Fiechter M, Dougoud S, Sah BR, Gebhard C et al (2013) First in vivo head-to-head comparison of high-definition versus standard-definition stent imaging with 64-slice computed tomography. Int J Cardiovasc Imaging 29(6):1409–1416

    Article  PubMed  Google Scholar 

  19. Ghadri JR, Goetti R, Fiechter M, Pazhenkottil AP, Kuest SM, Nkoulou RN et al (2011) Inter-scan variability of coronary artery calcium scoring assessed on 64-multidetector computed tomography vs. dual-source computed tomography: a head-to-head comparison. Eur Heart J 32(15):1865–1874

    Article  PubMed  Google Scholar 

  20. McCollough CH, Ulzheimer S, Halliburton SS, Shanneik K, White RD, Kalender WA (2007) Coronary artery calcium: a multi-institutional, multimanufacturer international standard for quantification at cardiac CT. Radiology 243(2):527–538

    Article  PubMed  Google Scholar 

  21. Hoff JA, Chomka EV, Krainik AJ, Daviglus M, Rich S, Kondos GT (2001) Age and gender distributions of coronary artery calcium detected by electron beam tomography in 35,246 adults. Am J Cardiol 87(12):1335–1339

    Article  PubMed  CAS  Google Scholar 

  22. Ghadri JR, Kuest SM, Goetti R, Fiechter M, Pazhenkottil AP, Nkoulou RN et al (2012) Image quality and radiation dose comparison of prospectively triggered low-dose CCTA: 128-slice dual-source high-pitch spiral versus 64-slice single-source sequential acquisition. Int J Cardiovasc Imaging 28(5):1217–1225

    Article  PubMed  Google Scholar 

  23. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  PubMed  CAS  Google Scholar 

  24. Otaki Y, Arsanjani R, Gransar H, Cheng VY, Dey D, Labounty T et al (2012) What have we learned from CONFIRM? Prognostic implications from a prospective multicenter international observational cohort study of consecutive patients undergoing coronary computed tomographic angiography. J Nucl Cardiol 19(4):787–795

    Article  PubMed  Google Scholar 

  25. Bajraktari G, Nicoll R, Ibrahimi P, Jashari F, Schmermund A, Henein MY (2013) Coronary calcium score correlates with estimate of total plaque burden. Int J Cardiol 167(3):1050–1052

    Article  PubMed  Google Scholar 

  26. Pundziute G, Schuijf JD, Jukema JW, Lamb HJ, de Roos A, van der Wall EE et al (2007) Impact of coronary calcium score on diagnostic accuracy of multislice computed tomography coronary angiography for detection of coronary artery disease. J Nucl Cardiol 14(1):36–43

    Article  PubMed  Google Scholar 

  27. Husmann L, Herzog BA, Burger IA, Buechel RR, Pazhenkottil AP, von Schulthess P et al (2010) Usefulness of additional coronary calcium scoring in low-dose CT coronary angiography with prospective ECG-triggering impact on total effective radiation dose and diagnostic accuracy. Acad Radiol 17(2):201–206

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by grants from the Swiss National Science Foundation (SNSF) to PAK. Furthermore, we thank our cardiac radiographers Ennio Mueller and Gentian Cermjani for their excellent technical support.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp A. Kaufmann.

Additional information

Tobias A. Fuchs and Julia Stehli have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuchs, T.A., Stehli, J., Dougoud, S. et al. Coronary artery calcium quantification from contrast enhanced CT using gemstone spectral imaging and material decomposition. Int J Cardiovasc Imaging 30, 1399–1405 (2014). https://doi.org/10.1007/s10554-014-0474-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0474-0

Keywords

Navigation