Skip to main content
Log in

Normal range and regional heterogeneity of myocardial perfusion in healthy human myocardium: assessment on dynamic perfusion CT using 128-slice dual-source CT

  • Original paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Information about myocardial perfusion in healthy hearts is essential for evaluating patients with ischemic heart disease. The purpose of this study was to determine the range and regional variability of myocardial perfusion in normal volunteers on dynamic perfusion computed tomography (CT). Myocardial perfusion was assessed in 19 healthy volunteers (age 33–60 years; 11 men) at rest and during adenosine-induced hyperemia using a 128-slice dual-source CT scanner. Data were quantified as cc/cc/min for the transmural myocardium based on a 17-segment American Heart Association model. Mean myocardial blood flows (MBF) were 1.73 ± 0.33 cc/cc/min during adenosine-induced hyperemia, 0.83 ± 0.21 cc/cc/min at rest, and perfusion reserve was 2.20 ± 0.53. Regional variability was 17 ± 5 % for hyperemic perfusion, 18 ± 7 % for resting, and 21 ± 6 % for perfusion reserve. Although statistically insignificant, perfusion in the septum was lower at rest and during hyperemia than in other regions. Women tended to have lower perfusion during hyperemia (1.65 ± 0.40 vs. 1.79 ± 0.28 cc/cc/min, P = 0.40), and higher perfusion at rest than men (0.91 ± 0.27 vs. 0.77 ± 0.15 cc/cc/min, P = 0.23), resulting in lower perfusion reserve (1.86 ± 0.31 vs. 2.45 ± 0.53, P = 0.11). This small cohort of healthy volunteers study reveals normal myocardial perfusion parameter on dynamic perfusion CT as follows: mean MBF is 1.73 ± 0.33 cc/cc/min during hyperemia, 0.83 ± 0.21 cc/cc/min at rest, and perfusion reserve is 2.20 ± 0.53. And the study also demonstrates considerable regional heterogeneity of the myocardial perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. J Am Coll Cardiol 52(21):1724–1732

    Article  PubMed  Google Scholar 

  2. Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359(22):2324–2336

    Article  CAS  PubMed  Google Scholar 

  3. Beller GA (2003) First annual Mario S. Verani, MD, Memorial lecture: clinical value of myocardial perfusion imaging in coronary artery disease. J Nucl Cardiol 10(5):529–542

    Article  PubMed  Google Scholar 

  4. Di Carli MF, Dorbala S, Curillova Z et al (2007) Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J Nucl Cardiol 14(6):799–809

    Article  PubMed  Google Scholar 

  5. Meijboom WB, Van Mieghem CA, van Pelt N et al (2008) Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 52(8):636–643

    Article  PubMed  Google Scholar 

  6. Ho KT, Chua KC, Klotz E et al (2010) Stress and rest dynamic myocardial perfusion imaging by evaluation of complete time-attenuation curves with dual-source CT. JACC Cardiovasc Imaging 3(8):811–820

    Article  PubMed  Google Scholar 

  7. Wintermark M, Maeder P, Thiran JP et al (2001) Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol 11(7):1220–1230

    Article  CAS  PubMed  Google Scholar 

  8. Diamond GA, Forrester JS (1979) Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med 300(24):1350–1358

    Article  CAS  PubMed  Google Scholar 

  9. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542

    Article  PubMed  Google Scholar 

  10. Kim SM, Kim YN, Choe YH (2013) Adenosine-stress dynamic myocardial perfusion imaging using 128-slice dual-source CT: optimization of the CT protocol to reduce the radiation dose. Int J Cardiovasc Imaging 29(4):875–884

    Article  PubMed  Google Scholar 

  11. Christner JA, Kofler JM, McCollough CH (2010) Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning. AJR Am J Roentgenol 194(4):881–889

    Article  PubMed  Google Scholar 

  12. Uren NG, Melin JA, De Bruyne B et al (1994) Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 330(25):1782–1788

    Article  CAS  PubMed  Google Scholar 

  13. Bergmann SR, Herrero P, Markham J et al (1989) Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 14(3):639–652

    Article  CAS  PubMed  Google Scholar 

  14. Schindler TH, Nitzsche EU, Schelbert HR et al (2005) Positron emission tomography-measured abnormal responses of myocardial blood flow to sympathetic stimulation are associated with the risk of developing cardiovascular events. J Am Coll Cardiol 45(9):1505–1512

    Article  PubMed  Google Scholar 

  15. Beard DA, Bassingthwaighte JB (2000) The fractal nature of myocardial blood flow emerges from a whole-organ model of arterial network. J Vasc Res 37(4):282–296

    Article  CAS  PubMed  Google Scholar 

  16. Bassingthwaighte JB, Beard DA, Li Z (2001) The mechanical and metabolic basis of myocardial blood flow heterogeneity. Basic Res Cardiol 96(6):582–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Duvernoy CS, Meyer C, Seifert-Klauss V et al (1999) Gender differences in myocardial blood flow dynamics: lipid profile and hemodynamic effects. J Am Coll Cardiol 33(2):463–470

    Article  CAS  PubMed  Google Scholar 

  18. Chareonthaitawee P, Kaufmann PA, Rimoldi O et al (2001) Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res 50(1):151–161

    Article  CAS  PubMed  Google Scholar 

  19. Collins P, Rosano GM, Sarrel PM et al (1995) 17 beta-Estradiol attenuates acetylcholine-induced coronary arterial constriction in women but not men with coronary heart disease. Circulation 92(1):24–30

    Article  CAS  PubMed  Google Scholar 

  20. Jerzewski A, Steendijk P, Pattynama PM et al (1999) Right ventricular systolic function and ventricular interaction during acute embolisation of the left anterior descending coronary artery in sheep. Cardiovasc Res 43(1):86–95

    Article  CAS  PubMed  Google Scholar 

  21. Al-Saadi N, Nagel E, Gross M et al (2000) Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101(12):1379–1383

    Article  CAS  PubMed  Google Scholar 

  22. Panting JR, Gatehouse PD, Yang GZ et al (2002) Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 346(25):1948–1953

    Article  PubMed  Google Scholar 

  23. Czernin J, Muller P, Chan S et al (1993) Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 88(1):62–69

    Article  CAS  PubMed  Google Scholar 

  24. Hutchins GD, Schwaiger M, Rosenspire KC et al (1990) Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 15(5):1032–1042

    Article  CAS  PubMed  Google Scholar 

  25. Hsu LY, Rhoads KL, Holly JE et al (2006) Quantitative myocardial perfusion analysis with a dual-bolus contrast-enhanced first-pass MRI technique in humans. J Magn Reson Imaging 23(3):315–322

    Article  PubMed  Google Scholar 

  26. Muehling OM, Jerosch-Herold M, Panse P et al (2004) Regional heterogeneity of myocardial perfusion in healthy human myocardium: assessment with magnetic resonance perfusion imaging. J Cardiovasc Magn Reson 6(2):499–507

    Article  PubMed  Google Scholar 

  27. Marcus ML, Kerber RE, Erhardt JC et al (1977) Spatial and temporal heterogeneity of left ventricular perfusion in awake dogs. Am Heart J 94(6):748–754

    Article  CAS  PubMed  Google Scholar 

  28. Marcus ML, Wilson RF, White CW (1987) Methods of measurement of myocardial blood flow in patients: a critical review. Circulation 76(2):245–253

    Article  CAS  PubMed  Google Scholar 

  29. Franzen D, Conway RS, Zhang H et al (1988) Spatial heterogeneity of local blood flow and metabolite content in dog hearts. Am J Physiol 254(2 Pt 2):H344–H353

    CAS  PubMed  Google Scholar 

  30. Jerosch-Herold M, Swingen C, Seethamraju RT (2002) Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys 29(5):886–897

    Article  PubMed  Google Scholar 

  31. Bamberg F, Becker A, Schwarz F et al (2011) Detection of hemodynamically significant coronary artery stenosis: incremental diagnostic value of dynamic CT-based myocardial perfusion imaging. Radiology 260(3):689–698

    Article  PubMed  Google Scholar 

  32. Klocke FJ (1976) Coronary blood flow in man. Prog Cardiovasc Dis 19(2):117–166

    Article  CAS  PubMed  Google Scholar 

  33. Einstein AJ, Moser KW, Thompson RC et al (2007) Radiation dose to patients from cardiac diagnostic imaging. Circulation 116(11):1290–1305

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from LG Life Sciences.

Conflict of interest

The authors report no conflicts of interest. The authors are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wook-Jin Chung or Yon Mi Sung.

Additional information

Wook-Jin Chung and Yon Mi Sung have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E.Y., Chung, WJ., Sung, Y.M. et al. Normal range and regional heterogeneity of myocardial perfusion in healthy human myocardium: assessment on dynamic perfusion CT using 128-slice dual-source CT. Int J Cardiovasc Imaging 30 (Suppl 1), 33–40 (2014). https://doi.org/10.1007/s10554-014-0432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0432-x

Keywords

Navigation