Skip to main content
Log in

Qualitative and quantitative accuracy of ultrasound-based virtual histology for detection of necrotic core in human coronary arteries

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The aim was to test the accuracy of virtual histology (VH) for detecting necrotic core (NC) in an ex vivo human model of coronary arteries as compared to real histology (RH). A total of nine consecutive explanted hearts were included in the study. Coronary segments, clearly identified by anatomical landmarks, were analyzed by intravascular ultrasound (IVUS-VH) immediately after heart collection and thereafter by RH. NC was expressed as absolute (total amount) and relative (corrected for plaque area) values. Correlation analysis was performed using linear regression models at cross-section level, with correction for repeated measurements per patient, and at segment level. Receiver operator curves (ROC) were developed for testing accuracy of VH in detecting RH-NC. Overall, 321 mm were analyzed corresponding to 642 IVUS-VH frames and corresponding histological slices. VH and RH-NC areas were 0.24 ± 0.43 and 0.16 ± 0.43 mm2, respectively (p < 0.001). At cross-section level, the correlation between VH and RH-NC was moderate in absolute (r = 0.50, p < 0.001) and poor in relative values (r = 0.43, p = 0.120). At the segment level, this correlation improves in terms of absolute values (r = 0.80, p = 0.01), but was not significant in terms of relative values (r = 0.43, p = 0.25). The ROC curve showed a C-statistics of 0.904 (p < 0.001) with high sensitivity (94 %), but low specificity (53 %) and low positive predictive value (48 %). Although VH has a high sensitivity in identifying RH-NC, it has a low specificity and low positive predictive value. In addition, it is not able to accurately quantify its size within the corresponding histological specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Garcia-Garcia HM, Costa MA, Serruys PW Imaging of coronary atherosclerosis: intravascular ultrasound. Eur Heart J 31(20):2456–2469. doi:10.1093/eurheartj/ehq280

  2. Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, Pinto FJ, Rosenfield K, Siegel RJ, Tuzcu EM, Yock PG (2001) American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American College of Cardiology task force on clinical expert consensus documents. J Am Coll Cardiol 37(5):1478–1492

    Article  CAS  PubMed  Google Scholar 

  3. Garcia-Garcia HM, Costa MA, Serruys PW (2010) Imaging of coronary atherosclerosis: intravascular ultrasound. Eur Heart J 31(20):2456–2469. doi:10.1093/eurheartj/ehq280

    Article  PubMed  Google Scholar 

  4. Garcia-Garcia HM, Gogas BD, Serruys PW, Bruining N (2011) IVUS-based imaging modalities for tissue characterization: similarities and differences. Int J Cardiovasc Imaging 27(2):215–224. doi:10.1007/s10554-010-9789-7

    Article  PubMed Central  PubMed  Google Scholar 

  5. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG (2002) Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106(17):2200–2206

    Article  PubMed  Google Scholar 

  6. Nair A, Margolis MP, Kuban BD, Vince DG (2007) Automated coronary plaque characterisation with intravascular ultrasound backscatter: ex vivo validation. Eur Interv 3(1):113–120

    Google Scholar 

  7. Garcia-Garcia HM, Mintz GS, Lerman A, Vince DG, Margolis MP, van Es GA, Morel MA, Nair A, Virmani R, Burke AP, Stone GW, Serruys PW (2009) Tissue characterisation using intravascular radiofrequency data analysis: recommendations for acquisition, analysis, interpretation and reporting. Eur Interv 5(2):177–189

    Google Scholar 

  8. Nasu K, Tsuchikane E, Katoh O, Vince DG, Virmani R, Surmely JF, Murata A, Takeda Y, Ito T, Ehara M, Matsubara T, Terashima M, Suzuki T (2006) Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol 47(12):2405–2412. doi:10.1016/j.jacc.2006.02.044

    Article  PubMed  Google Scholar 

  9. Thim T, Hagensen MK, Wallace-Bradley D, Granada JF, Kaluza GL, Drouet L, Paaske WP, Botker HE, Falk E (2010) Unreliable assessment of necrotic core by virtual histology intravascular ultrasound in porcine coronary artery disease. Circ Cardiovasc Imaging 3(4):384–391. doi:10.1161/CIRCIMAGING.109.919357

    Article  PubMed  Google Scholar 

  10. Granada JF, Wallace-Bradley D, Win HK, Alviar CL, Builes A, Lev EI, Barrios R, Schulz DG, Raizner AE, Kaluza GL (2007) In vivo plaque characterization using intravascular ultrasound-virtual histology in a porcine model of complex coronary lesions. Arterioscler Thromb Vasc Biol 27(2):387–393. doi:10.1161/01.ATV.0000253907.51681.0e

    Article  CAS  PubMed  Google Scholar 

  11. Hausmann D, Lundkvist AJ, Friedrich GJ, Mullen WL, Fitzgerald PJ, Yock PG (1994) Intracoronary ultrasound imaging: intraobserver and interobserver variability of morphometric measurements. Am Heart J 128(4):674–680

    Article  CAS  PubMed  Google Scholar 

  12. Serruys PW, Ormiston JA, Onuma Y, Regar E, Gonzalo N, Garcia-Garcia HM, Nieman K, Bruining N, Dorange C, Miquel-Hebert K, Veldhof S, Webster M, Thuesen L, Dudek D (2009) A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet 373(9667):897–910. doi:10.1016/S0140-6736(09)60325-1

    Article  CAS  PubMed  Google Scholar 

  13. Metz CE (1978) Basic principles of ROC analysis. Semin Nucl Med 8(4):283–298

    Article  CAS  PubMed  Google Scholar 

  14. Brugaletta S, Garcia-Garcia HM, Serruys PW, de Boer S, Ligthart J, Gomez-Lara J, Witberg K, Diletti R, Wykrzykowska J, van Geuns RJ, Schultz C, Regar E, Duckers HJ, van Mieghem N, de Jaegere P, Madden SP, Muller JE, van der Steen AF, van der Giessen WJ, Boersma E (2011) NIRS and IVUS for characterization of atherosclerosis in patients undergoing coronary angiography. J Am Coll Cardiol Imaging 4(6):647–655. doi:10.1016/j.jcmg.2011.03.013

    Article  Google Scholar 

  15. Pu J, Mintz GS, Brilakis ES, Banerjee S, Abdel-Karim AR, Maini B, Biro S, Lee JB, Stone GW, Weisz G, Maehara A (2011) In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy. Eur Heart J. doi:10.1093/eurheartj/ehr387

    PubMed  Google Scholar 

  16. Burke AP, Kolodgie FD, Zieske A, Fowler DR, Weber DK, Varghese PJ, Farb A, Virmani R (2004) Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler Thromb Vasc Biol 24(7):1266–1271. doi:10.1161/01.ATV.0000131783.74034.97

    Article  CAS  PubMed  Google Scholar 

  17. Garcia-Garcia HM, Serruys PW, Mintz GS, Saito S, Klaus V, Margolis P, Carlier S, Goedhart D, Schwartz R (2009) Synergistic effect of cardiovascular risk factors on necrotic core in coronary arteries: a report from the global intravascular radiofrequency data analysis registry. JACC Cardiovasc Imaging 2(5):629–636. doi:10.1016/j.jcmg.2009.01.008

    Article  PubMed  Google Scholar 

  18. Marso SP, Frutkin AD, Mehta SK, House JA, McCrary JR, Klauss V, Lerman A, Leon MB, Nair A, Margolis P, Erbel R, Nasu K, Schiele F, Margolis J (2009) Intravascular ultrasound measures of coronary atherosclerosis are associated with the Framingham risk score: an analysis from a global IVUS registry. Eur Interv 5(2):212–218

    Google Scholar 

  19. Serruys PW, Garcia-Garcia HM, Buszman P, Erne P, Verheye S, Aschermann M, Duckers H, Bleie O, Dudek D, Botker HE, von Birgelen C, D’Amico D, Hutchinson T, Zambanini A, Mastik F, van Es GA, van der Steen AF, Vince DG, Ganz P, Hamm CW, Wijns W, Zalewski A (2008) Effects of the direct lipoprotein-associated phospholipase A(2) inhibitor darapladib on human coronary atherosclerotic plaque. Circulation 118(11):1172–1182. doi:10.1161/CIRCULATIONAHA.108.771899

    Article  CAS  PubMed  Google Scholar 

  20. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP, Parise H, Templin B, White R, Zhang Z, Serruys PW (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364(3):226–235. doi:10.1056/NEJMoa1002358

    Article  CAS  PubMed  Google Scholar 

  21. Calvert PA, Obaid DR, O’Sullivan M, Shapiro LM, McNab D, Densem CG, Schofield PM, Braganza D, Clarke SC, Ray KK, West NE, Bennett MR (2011) Association between IVUS findings and adverse outcomes in patients with coronary artery disease the VIVA (VH-IVUS in vulnerable atherosclerosis) study. JACC Cardiovasc imaging 4(8):894–901. doi:10.1016/j.jcmg.2011.05.005

    Article  PubMed  Google Scholar 

  22. Schaar JA, Muller JE, Falk E, Virmani R, Fuster V, Serruys PW, Colombo A, Stefanadis C, Ward Casscells S, Moreno PR, Maseri A, van der Steen AF (2004) Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, 2003, Santorini, Greece. Eur Heart J 25(12):1077–1082. doi:10.1016/j.ehj.2004.01.002

  23. Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47(8 Suppl):C13–C18. doi:10.1016/j.jacc.2005.10.065

    Article  CAS  PubMed  Google Scholar 

  24. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20(5):1262–1275

    Article  CAS  PubMed  Google Scholar 

  25. Virmani R (2011) Are our tools for the identification of TCFA ready and do we know them? JACC Cardiovasc imaging 4(6):656–658. doi:10.1016/j.jcmg.2011.01.019

    Article  PubMed  Google Scholar 

  26. Garcia-Garcia HM, Gonzalo N, Kukreja N, Alfonso F (2008) Greyscale intravascular ultrasound and IVUS-radiofrequency tissue characterisation to improve understanding of the mechanisms of coronary stent thrombosis in drug-eluting stents. Eur Interv 4(Suppl C):C33–C38

    Google Scholar 

Download references

Acknowledgments

This study belongs to the Program 2 of the Red Cardiovascular of the ISCiii (Atherothrombosis/Myocardial Ischemia): Reducing Myocardial Injury Secondary to Coronary Artery Disease (REMIND).

Conflict of interest

None of the authors have conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel Sabate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brugaletta, S., Cola, C., Martin-Yuste, V. et al. Qualitative and quantitative accuracy of ultrasound-based virtual histology for detection of necrotic core in human coronary arteries. Int J Cardiovasc Imaging 30, 469–476 (2014). https://doi.org/10.1007/s10554-014-0372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0372-5

Keywords

Navigation