Skip to main content
Log in

A fast and effective method of quantifying myocardial perfusion by magnetic resonance imaging

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The quantification of global myocardial blood flow (MBF) by measuring coronary sinus flow by magnetic resonance (MRI) was demonstrated to be very well correlated with positron emission tomography (PET). We proposed a new method for the quantification of regional myocardial perfusion with MRI by the integration of MBF and first pass technique. The aim of this study was to validate this new method for quantification of regional perfusion by comparing it with 13NH13-PET in swine models of myocardial infarction and in humans in resting and hyperemic conditions. MRI and 13NH3-PET was performed in 2 healthy swine, 11 swine models of myocardial infarction (5 reperfused, 6 non reperfused) and in 12 humans at rest and during hyperemia. MBF was estimated by MRI through the quantification of coronary sinus flow and left ventricular (LV) mass. The upslope of signal intensity (SI-upslope) of each myocardial segment was obtained by the first pass gadolinium technique. Regional SI-upslope was indexed by the upslope of the entire left ventricular myocardium (global upslope). Regional myocardial perfusion was estimated as the product of MBF and SI-upslope/global upslope. Regional perfusion was also estimated by 13NH3-PET. A close agreement of the MRI and PET techniques for measurement of regional myocardial perfusion was found in all myocardial segments by Bland–Altman analysis (mean difference 5.1 %; limits of agreement, −37.2–27.5 %). With the integration of the first pass technique and the measurement of global MBF by coronary sinus flow/LV mass, MRI allows direct quantification of regional myocardial perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schelbert HR, Wisenberg G, Phelps ME, Gould KL, Henze E, Hoffman EJ, Gomes A, Kuhl DE (1982) Noninvasive assessment of coronary stenosis by myocardial imaging during pharmacologic coronary vasodilation. Vl. Detection of coronary artery disease in man with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol 49:1197–1207

    Article  PubMed  CAS  Google Scholar 

  2. Araujo LI, Lammertsma AA, Rhodes CG, McFalls EO, Iida H, Rechavia E, Galassi A, De Silva R, Jones T, Maseri A (1991) Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation 83:875–885

    Article  PubMed  CAS  Google Scholar 

  3. Pingitore A, Lombardi M, Scattini B, De Marchi D, Aquaro GD, Positano V, Picano E (2008) Head to head comparison between perfusion and function during accelerated high-dose dipyridamole magnetic resonance stress for the detection of coronary artery disease. Am J Cardiol 101:8–14

    Article  PubMed  CAS  Google Scholar 

  4. Jerosch-Herold M, Wilke N (1997) MR first pass imaging: quantitative assessment of transmural perfusion and collateral flow. Int J Card Imaging 13:205–218

    Article  PubMed  CAS  Google Scholar 

  5. Patel AR, Antkowiak PF, Nandalur KR et al (2010) Assessment of advanced coronary artery disease: advantages of quantitative cardiac magnetic resonance perfusion analysis. J Am Coll Cardiol 56:561–569

    Article  PubMed  Google Scholar 

  6. Jerosch-Herold M, Swingen C, Seethamraju RT (2002) Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys 29:886–897

    Article  PubMed  Google Scholar 

  7. Vallee J-P, Sostman HD, MacFall JR, DeGrado TR, Zhang J, Sebbag L, Cobb FR (1998) Quantification of myocardial perfusion by MRI after coronary occlusion. Magn Reson Med 40:287–297

    Article  PubMed  CAS  Google Scholar 

  8. Jerosch-Herold M, Wilke N, Stillman AE (1998) Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 25:73–84

    Article  PubMed  CAS  Google Scholar 

  9. Schwitter J, DeMarco T, Kneifel S, von Schulthess GV, Ciopor Jörg M, Arheden H, Rühm S, Stumpe K, Buck A, Parmley WW, Lüscher TF, Higgins CB (2000) Magnetic resonance-based assessment of global coronary flow and flow reserve and its relation to left ventricular functional parameters: a comparison with positron emission tomography. Circulation 101:2696–2702

    Article  PubMed  CAS  Google Scholar 

  10. Koskenvuo JW, Sakuma H, Niemi P, Toikka JO, Knuuti J, Laine H, Komu M, Kormano M, Saraste M, Hartiala JJ (2001) Global myocardial blood flow and global flow reserve measurements by MRI and PET are comparable. J Magn Reson Imaging 13:361–366

    Article  PubMed  CAS  Google Scholar 

  11. Leor J, Tuvia S, Guetta V, Manczur F, Castel D, Willenz U, Petneházy O, Landa N, Feinberg MS, Konen E, Goitein O, Tsur-Gang O, Shaul M, Klapper L, Cohen S (2009) Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. J Am Coll Cardiol 54:1014–1023

    Article  PubMed  Google Scholar 

  12. Smith AC, Zellner JL, Spinale FG, Swindle MM (1991) Sedative and cardiovascular effects of midazolam in swine. Lab Anim Sci 41:157–161

    PubMed  CAS  Google Scholar 

  13. Holland BJ, Printz BF, Lai WW (2010) Baseline correction of phase-contrast images in congenital cardiovascular magnetic resonance. J Cardiovasc Magn Reson 12:11

    Article  PubMed  Google Scholar 

  14. Meloni A, Al-Saadi N, Torheim G, Hoebel N, Reynolds HG, De Marchi D, Positano V, Burchielli S, Lombardi M (2011) Myocardial first-pass perfusion: influence of spatial resolution and heart rate on the dark rim artifact. Magn Reson Med 66:1731–1738

    Article  PubMed  Google Scholar 

  15. Vinnakota KC, Bassingthwaighte JB (2004) Myocardial density and composition: a basis for calculating intracellular metabolite concentrations. Am J Physiol Heart Circ Physiol 286:1742–1749

    Article  Google Scholar 

  16. Lund GK, Wendland MF, Shimakawa A, Arheden H, Ståhlberg F, Higgins CB, Saeed M (2000) Coronary sinus flow measurement by means of velocity-encoded cine MR imaging: validation by using flow probes in dogs. Radiology 217:487–493

    PubMed  CAS  Google Scholar 

  17. Aquaro GD, Todiere G, Barison A, Strata E, Marzilli M, Pingitore A, Lombardi M (2011) Myocardial blood flow and fibrosis in hypertrophic cardiomyopathy. J Card Fail 17(5):384–391

    Article  PubMed  Google Scholar 

  18. Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K, Fleck E (2003) Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 108:432–437

    Article  PubMed  Google Scholar 

  19. Bellina RC, Parodi O, Camici P, Salvadori PA, Taddei L, Fusani L, Guzzardi R, Klassen GA, L’Abbate AL, Donato L (1990) Simultaneous in vitro and in vivo validation of nitrogen-13 ammonia for the assessment of regional myocardial blood flow. J Nucl Med 1990(31):1335–1343

    Google Scholar 

  20. Neglia D, Parodi O, Gallopin M, Sambuceti G, Giorgetti A, Pratali L, Salvatori P, Michelassi C, Lunardi M, Pelosi G, Marzilli M, L’Abbate A (1995) Myocardial blood flow response to pacing tachycardia and to dipyridamole infusion in patients with dilated cardiomyopathy without overt heart failure. A quantitative assessment by positron emission tomography. Circulation 92:796–804

    Article  PubMed  CAS  Google Scholar 

  21. Nekolla SG, Miethaner C, Nguyen N, Ziegler SI, Schwaiger M (1998) Reproducibility of polar map generation and assessment of defect severity and extent assessment in myocardial perfusion imaging using positron emission tomography. Eur J Nucl Med 25:1313–1321

    Article  PubMed  CAS  Google Scholar 

  22. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  PubMed  CAS  Google Scholar 

  23. Florentine MS, Grosskreutz CL, Chang W et al (1986) Measurement of left ventricular mass in vivo using gated nuclear magnetic resonance imaging. J Am Coll Cardiol 8:107–112

    Article  PubMed  CAS  Google Scholar 

  24. Keller AM, Peshock RM, Malloy CR et al (1986) In vivo measurement of myocardial mass using nuclear magnetic resonance imaging. J Am Coll Cardiol 8:113–117

    Article  PubMed  CAS  Google Scholar 

  25. Awada S, Muzik O, Beanlands RSB, Wolfe E, Hutchins GD, Schwaiger M (1995) Interobserver and interstudy variability of myocardial blood flow and flow reserve measurements with nitrogen 13 ammonia-labeled positron emission tomography. J Nucl Cardiol 2:413–422

    Article  Google Scholar 

  26. Ishida M, Ichihara T, Nagata M, Ishida N, Takase S, Kurita T, Ito M, Takeda K, Sakuma H (2011) Quantification of myocardial blood flow using model based analysis of first-pass perfusion MRI: extraction fraction of Gd-DTPA varies with myocardial blood flow in human myocardium. Magn Reson Med 66:1391–1399

    Article  PubMed  Google Scholar 

  27. Jerosch-Herold M, Swingen C, Seethamraju RT (2002) Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys 29:886–897

    Article  PubMed  Google Scholar 

  28. Morton G, Chiribiri A, Ishida M, Hussain ST, Schuster A, Indermuehle A, Perera D, Knuuti J, Baker S, Hedström E, Schleyer P, O’Doherty M, Barrington S, Nagel E (2012) Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J Am Coll Cardiol 60:1546–1555

    Article  PubMed  Google Scholar 

  29. Jerosch-Herold M, Wilke N, Stillman AE (1998) Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 25:73–84

    Article  PubMed  CAS  Google Scholar 

  30. Zierler KL (1962) Theoretical basis of indicator-dilution methods. Circ Res 10:393–407

    Article  Google Scholar 

  31. Petersen SE, Jerosch-Herold M, Hudsmith LE, Robson MD, Francis JM, Doll HA, Selvanayagam J, Neubauer S, Watkins H (2007) Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation 115:2418–2425

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Donato Aquaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aquaro, G.D., Todiere, G., Di Bella, G. et al. A fast and effective method of quantifying myocardial perfusion by magnetic resonance imaging. Int J Cardiovasc Imaging 29, 1313–1324 (2013). https://doi.org/10.1007/s10554-013-0220-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-013-0220-z

Keywords

Navigation