Skip to main content
Log in

Left and right ventricular strain and strain rate measurement in normal adults using velocity vector imaging: an assessment of reference values and intersystem agreement

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Velocity vector imaging (VVI) software permits quantitative assessment of ventricular function through measurement of myocardial strain (S) and strain rate (SR). The purpose of this study was to define a reference range of ventricular S and SR values in normal adults using VVI software, and to describe the variability among observers and systems. Two-dimensional echocardiography was performed in 186 healthy adults free of cardiovascular disease or risk factors, followed by comprehensive ventricular S and SR analysis using VVI software. Images were acquired using three commercial ultrasound systems. The mean age of patients was 44 ± 16 years, and 114 (61 %) were female. Mean global left ventricular (LV) longitudinal, circumferential, and radial S and SR, and right ventricular (RV) longitudinal S and SR values are presented. Significant segmental variation in regional LV and RV S and SR was detected. Multivariate regression analysis demonstrated global longitudinal LV (p = 0.05) and RV (p = 0.002) S values decline significantly with age. The overall variability of S and SR values accounted for by patient demographic and hemodynamic variables was low (16 and 8 % for LV longitudinal S and SR, respectively). Interobserver agreement was very good, but was lowest for LV radial S and SR. There were no significant differences of LV and RV S and SR between ultrasound systems. Comprehensive reference values for the normal ranges of LV and RV S and SR measured using VVI software are presented. The ultrasound system used for image acquisition did not significantly influence results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

2D:

2-Dimensional

BMI:

Body mass index

CI:

Confidence interval

DICOM:

Digital Imaging and Communications in Medicine

EF:

Ejection fraction

ICC:

Intraclass correlation coefficient

LV:

Left ventricle

MRI:

Magnetic resonance imaging

RV:

Right ventricle

S:

Strain

SD:

Standard deviation

SEM:

Standard error of the mean

SR:

Strain rate

STE:

Speckle-tracking echocardiography

TDI:

Tissue Doppler imaging

TTE:

Transthoracic echocardiography

VVI:

Velocity vector imaging

References

  1. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, Galderisi M, Marwick T, Nagueh SF, Sengupta PP, Sicari R, Smiseth OA, Smulevitz B, Takeuchi M, Thomas JD, Vannan M, Voigt JU, Zamorano JL (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese society of echocardiography. J Am Soc Echocardiogr 24:277–313

    Article  PubMed  Google Scholar 

  2. D’Hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, Hatle L, Suetens P, Sutherland GR (2000) Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr 1:154–170

    Article  PubMed  Google Scholar 

  3. Langeland S, D’Hooge J, Wouters PF, Leather HA, Claus P, Bijnens B, Sutherland GR (2005) Experimental validation of a new ultrasound method for the simultaneous assessment of radial and longitudinal myocardial deformation independent of insonation angle. Circulation 112:2157–2162

    Article  PubMed  Google Scholar 

  4. Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, Kaluski E, Krakover R, Vered Z (2004) Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 17:1021–1029

    Article  PubMed  Google Scholar 

  5. Korinek J, Wang J, Sengupta PP, Miyazaki C, Kjaergaard J, McMahon E, Abraham TP, Belohlavek M (2005) Two-dimensional strain—a doppler-independent ultrasound method for quantitation of regional deformation: validation in vitro and in vivo. J Am Soc Echocardiogr 18:1247–1253

    Article  PubMed  Google Scholar 

  6. Pirat B, Khoury DS, Hartley CJ, Tiller L, Rao L, Schulz DG, Nagueh SF, Zoghbi WA (2008) A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function: validation in an animal model of ischemia-reperfusion. J Am Coll Cardiol 51:651–659

    Article  PubMed  Google Scholar 

  7. Reant P, Labrousse L, Lafitte S, Bordachar P, Pillois X, Tariosse L, Bonoron-Adele S, Padois P, Deville C, Roudaut R, Dos Santos P (2008) Experimental validation of circumferential, longitudinal, and radial 2-dimensional strain during dobutamine stress echocardiography in ischemic conditions. J Am Coll Cardiol 51:149–157

    Article  PubMed  Google Scholar 

  8. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, Stoylen A, Ihlen H, Lima JA, Smiseth OA, Slordahl SA (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47:789–793

    Article  PubMed  Google Scholar 

  9. Vannan MA, Pedrizzetti G, Li P, Gurudevan S, Houle H, Main J, Jackson J, Nanda NC (2005) Effect of cardiac resynchronization therapy on longitudinal and circumferential left ventricular mechanics by velocity vector imaging: description and initial clinical application of a novel method using high-frame rate b-mode echocardiographic images. Echocardiography 22:826–830

    Article  PubMed  Google Scholar 

  10. Pirat B, McCulloch ML, Zoghbi WA (2006) Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method. Am J Cardiol 98:699–704

    Article  PubMed  Google Scholar 

  11. Jurcut R, Pappas CJ, Masci PG, Herbots L, Szulik M, Bogaert J, Van de Werf F, Desmet W, Rademakers F, Voigt JU, D’Hooge J (2008) Detection of regional myocardial dysfunction in patients with acute myocardial infarction using velocity vector imaging. J Am Soc Echocardiogr 21:879–886

    Article  PubMed  Google Scholar 

  12. Masuda K, Asanuma T, Taniguchi A, Uranishi A, Ishikura F, Beppu S (2008) Assessment of dyssynchronous wall motion during acute myocardial ischemia using velocity vector imaging. JACC Cardiovasc Imaging 1:210–220

    Article  PubMed  Google Scholar 

  13. Sun JP, Popovic ZB, Greenberg NL, Xu XF, Asher CR, Stewart WJ, Thomas JD (2004) Noninvasive quantification of regional myocardial function using doppler-derived velocity, displacement, strain rate, and strain in healthy volunteers: effects of aging. J Am Soc Echocardiogr 17:132–138

    Article  PubMed  Google Scholar 

  14. Edvardsen T, Gerber BL, Garot J, Bluemke DA, Lima JA, Smiseth OA (2002) Quantitative assessment of intrinsic regional myocardial deformation by doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation 106:50–56

    Article  PubMed  Google Scholar 

  15. Kowalski M, Kukulski T, Jamal F, D’Hooge J, Weidemann F, Rademakers F, Bijnens B, Hatle L, Sutherland GR (2001) Can natural strain and strain rate quantify regional myocardial deformation? A study in healthy subjects. Ultrasound Med Biol 27:1087–1097

    Article  PubMed  CAS  Google Scholar 

  16. Marwick TH, Leano RL, Brown J, Sun JP, Hoffmann R, Lysyansky P, Becker M, Thomas JD (2009) Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc Imaging 2:80–84

    Article  PubMed  Google Scholar 

  17. Rodriguez-Bailon I, Jimenez-Navarro MF, Perez-Gonzalez R, Garcia-Orta R, Morillo-Velarde E, de Teresa-Galvan E (2010) Left ventricular deformation and two-dimensional echocardiography: temporal and other parameter values in normal subjects. Rev Esp Cardiol 63:1195–1199

    Article  PubMed  Google Scholar 

  18. Grundy SM, Pasternak R, Greenland P, Smith S Jr, Fuster V (1999) Aha/acc scientific statement: assessment of cardiovascular risk by use of multiple-risk-factor assessment equations: a statement for healthcare professionals from the american heart association and the american college of cardiology. J Am Coll Cardiol 34:1348–1359

    Article  PubMed  CAS  Google Scholar 

  19. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ (2005) Recommendations for chamber quantification: a report from the american society of echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the european association of echocardiography, a branch of the european society of cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  PubMed  Google Scholar 

  20. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelista A (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 22:107–133

    Article  PubMed  Google Scholar 

  21. Yu CM, Lin H, Zhang Q, Sanderson JE (2003) High prevalence of left ventricular systolic and diastolic asynchrony in patients with congestive heart failure and normal qrs duration. Heart (British Cardiac Soc) 89:54–60

    Article  Google Scholar 

  22. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428

    Article  PubMed  CAS  Google Scholar 

  23. Dalen H, Thorstensen A, Aase SA, Ingul CB, Torp H, Vatten LJ, Stoylen A (2010) Segmental and global longitudinal strain and strain rate based on echocardiography of 1266 healthy individuals: the hunt study in norway. Eur J Echocardiogr 11:176–183

    Article  PubMed  Google Scholar 

  24. Kuznetsova T, Herbots L, Richart T, D’Hooge J, Thijs L, Fagard RH, Herregods MC, Staessen JA (2008) Left ventricular strain and strain rate in a general population. Eur Heart J 29:2014–2023

    Article  PubMed  Google Scholar 

  25. Reckefuss N, Butz T, Horstkotte D, Faber L (2011) Evaluation of longitudinal and radial left ventricular function by two-dimensional speckle-tracking echocardiography in a large cohort of normal probands. Int J Cardiovasc Imaging 27:515–526

    Article  PubMed  Google Scholar 

  26. Hurlburt HM, Aurigemma GP, Hill JC, Narayanan A, Gaasch WH, Vinch CS, Meyer TE, Tighe DA (2007) Direct ultrasound measurement of longitudinal, circumferential, and radial strain using 2-dimensional strain imaging in normal adults. Echocardiography 24:723–731

    Article  PubMed  Google Scholar 

  27. Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA (2000) Myocardial strain by doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation 102:1158–1164

    Article  PubMed  CAS  Google Scholar 

  28. Ingul CB, Torp H, Aase SA, Berg S, Stoylen A, Slordahl SA (2005) Automated analysis of strain rate and strain: feasibility and clinical implications. J Am Soc Echocardiogr 18:411–418

    Article  PubMed  Google Scholar 

  29. Ingul CB, Stoylen A, Slordahl SA, Wiseth R, Burgess M, Marwick TH (2007) Automated analysis of myocardial deformation at dobutamine stress echocardiography: an angiographic validation. J Am Coll Cardiol 49:1651–1659

    Article  PubMed  Google Scholar 

  30. Smiseth OA, Stoylen A, Ihlen H (2004) Tissue doppler imaging for the diagnosis of coronary artery disease. Curr Opin Cardiol 19:421–429

    Article  PubMed  Google Scholar 

  31. Amundsen BH, Crosby J, Steen PA, Torp H, Slordahl SA, Stoylen A (2009) Regional myocardial long-axis strain and strain rate measured by different tissue doppler and speckle tracking echocardiography methods: a comparison with tagged magnetic resonance imaging. Eur J Echocardiogr 10:229–237

    Article  PubMed  Google Scholar 

  32. Bansal M, Cho GY, Chan J, Leano R, Haluska BA, Marwick TH (2008) Feasibility and accuracy of different techniques of two-dimensional speckle based strain and validation with harmonic phase magnetic resonance imaging. J Am Soc Echocardiogr 21:1318–1325

    Article  PubMed  Google Scholar 

  33. Teske AJ, De Boeck BW, Olimulder M, Prakken NH, Doevendans PA, Cramer MJ (2008) Echocardiographic assessment of regional right ventricular function: a head-to-head comparison between 2-dimensional and tissue doppler-derived strain analysis. J Am Soc Echocardiogr 21:275–283

    Article  PubMed  Google Scholar 

  34. Weidemann F, Eyskens B, Jamal F, Mertens L, Kowalski M, D’Hooge J, Bijnens B, Gewillig M, Rademakers F, Hatle L, Sutherland GR (2002) Quantification of regional left and right ventricular radial and longitudinal function in healthy children using ultrasound-based strain rate and strain imaging. J Am Soc Echocardiogr 15:20–28

    Article  PubMed  Google Scholar 

  35. Kutty S, Deatsman SL, Nugent ML, Russell D, Frommelt PC (2008) Assessment of regional right ventricular velocities, strain, and displacement in normal children using velocity vector imaging. Echocardiography 25:294–307

    Article  PubMed  Google Scholar 

  36. Manovel A, Dawson D, Smith B, Nihoyannopoulos P (2010) Assessment of left ventricular function by different speckle-tracking software. Eur J Echocardiogr 11:417–421

    Article  PubMed  Google Scholar 

  37. Cho GY, Chan J, Leano R, Strudwick M, Marwick TH (2006) Comparison of two-dimensional speckle and tissue velocity based strain and validation with harmonic phase magnetic resonance imaging. Am J Cardiol 97:1661–1666

    Article  PubMed  Google Scholar 

  38. Becker M, Hoffmann R, Kuhl HP, Grawe H, Katoh M, Kramann R, Bucker A, Hanrath P, Heussen N (2006) Analysis of myocardial deformation based on ultrasonic pixel tracking to determine transmurality in chronic myocardial infarction. Eur Heart J 27:2560–2566

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector R. Villarraga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fine, N.M., Shah, A.A., Han, IY. et al. Left and right ventricular strain and strain rate measurement in normal adults using velocity vector imaging: an assessment of reference values and intersystem agreement. Int J Cardiovasc Imaging 29, 571–580 (2013). https://doi.org/10.1007/s10554-012-0120-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-012-0120-7

Keywords

Navigation