Impact of acute normobaric hypoxia on regional and global myocardial function: a speckle tracking echocardiography study

Abstract

Aim of this study was to evaluate the influence of normobaric hypoxia on myocardial function in healthy humans. Fourteen subjects underwent two-dimensional speckle tracking echocardiography (2D-STE) examination during normoxia and in a normobaric hypoxia chamber. Examinations were performed at rest and during bicycle exercise test. The following parameters were quantified in both atria and ventricles by 2D-STE: Global Strain (S), systolic strain rate (SRS), early (SRE) and late (SRA) diastolic strain rate. During hypoxia SRS and SRE increased significantly in both ventricles compared to baseline. The increase of LV SRS and SRE during normoxic exercise was significantly higher when compared with exercise under hypoxia (for SRS −0.55 ± 0.22 vs. −0.34 ± 0.24 1/s, p = 0.024; for SRE 0.56 ± 0.29 vs. 0.23 ± 0.29 1/s, p = 0.005). For the right ventricle (RV) no significant difference of exercise induced increase of systolic contractility was found (SRS −1.07 ± 0.53 under normoxia vs. −1.28 ± 0.24 1/s under hypoxic conditions, p = 0.47). A shift from passive conduit (SRE) to active contraction (SRA) phase during hypoxia was noted for the right atrium (RA) (SRE/SRA 0.72 ± 0.13 under hypoxia vs. 1.17 ± 0.17 under normoxia). The ratio SRE/SRA of RA was closely related to pulmonary systolic pressure (r = −0.78, p < 0.001). Exposure to normobaric hypoxia leads to an increase of regional myocardial deformation in both ventricles. The contractile reserve during hypoxic exercise is reduced in LV, whereas RV systolic deformation rate is maintained. In addition, hypoxia had an impact on the ratio of passive conduit to active contraction phase in right atrium.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ (2003) A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol 41(6):1021–1027. doi:10.1016/S0735-1097(02)02973-X

    PubMed  Article  Google Scholar 

  2. 2.

    Allemann Y, Rotter M, Hutter D, Lipp E, Sartori C, Scherrer U, Seiler C (2004) Impact of acute hypoxic pulmonary hypertension on LV diastolic function in healthy mountaineers at high altitude. Am J Physiol Heart Circ Physiol 286(3):H856–H862. doi:10.1152/ajpheart.00518.2003

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, Støylen A, Ihlen H, Lima JA, Smiseth OA, Slørdahl SA (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47(4):789–793. doi:10.1016/j.jacc.2005.10.040

    PubMed  Article  Google Scholar 

  4. 4.

    Amundsen BH, Crosby J, Steen PA, Torp H, Slørdahl SA, Støylen A (2009) Regional myocardial long-axis strain and strain rate measured by different tissue Doppler and speckle tracking echocardiography methods: a comparison with tagged magnetic resonance imaging. Eur J Echocardiogr 10(2):229–237. doi:10.1093/ejechocard/jen201

    PubMed  Article  Google Scholar 

  5. 5.

    Bazett HC (1997) An analysis of the time-relations of electrocardiograms. Ann Noninvasive Electrocardiol 2(2):177–194. doi:10.1111/j.1542-474X.1997.tb00325.x

    Article  Google Scholar 

  6. 6.

    Bogaard HJ, Hopkins SR, Yamaya Y, Niizeki K, Ziegler MG, Wagner PD (2002) Role of autonomic nervous system in the reduced maximal cardiac output at altitude. J Appl Physiol 93(1):271–279. doi:10.1152/japplphysiol.00323.2001

    PubMed  Google Scholar 

  7. 7.

    Boussuges A, Molenat F, Burnet H, Cauchy E, Gardette B, Sainty JM, Jammes Y, Richalet JP (2000) Operation Everest III (Comex ‘97): modifications of cardiac function secondary to altitude-induced hypoxia. An echocardiographic and Doppler study. Am J Respir Crit Care Med 161(1):264–270

    PubMed  CAS  Google Scholar 

  8. 8.

    Brimioulle S, Wauthy P, Ewalenko P, Rondelet B, Vermeulen F, Kerbaul F, Naeije R (2003) Single-beat estimation of right ventricular end-systolic pressure-volume relationship. Am J Physiol Heart Circ Physiol 284(5):H1625–H1630. doi:10.1152/ajpheart.01023.2002

    PubMed  CAS  Google Scholar 

  9. 9.

    Cunningham WL, Becker EJ, Kreuzer F (1965) Catecholamines in plasma and urine at high altitude. J Appl Physiol 20(4):607–610

    PubMed  CAS  Google Scholar 

  10. 10.

    Dalen H, Thorstensen A, Aase SA, Ingul CB, Torp H, Vatten LJ, Stoylen A (2010) Segmental and global longitudinal strain and strain rate based on echocardiography of 1266 healthy individuals: the HUNT study in Norway. Eur J Echocardiogr 11(2):176–183. doi:10.1093/ejechocard/jep194

    PubMed  Article  Google Scholar 

  11. 11.

    de Vroomen M, Cardozo RH, Steendijk P, van Bel F, Baan J (2000) Improved contractile performance of right ventricle in response to increased RV afterload in newborn lamb. Am J Physiol Heart Circ Physiol 278(1):H100–H105

    PubMed  Google Scholar 

  12. 12.

    Gjesdal O, Helle-Valle T, Hopp E, Lunde K, Vartdal T, Aakhus S, Smith HJ, Ihlen H, Edvardsen T (2008) Noninvasive separation of large, medium, and small myocardial infarcts in survivors of reperfused ST-elevation myocardial infarction: a comprehensive tissue Doppler and speckle-tracking echocardiography study. Circ Cardiovasc Imaging 1(3):189–196. doi:10.1161/CIRCIMAGING.108.781120

    PubMed  Article  Google Scholar 

  13. 13.

    Goebel B, Gjesdal O, Kottke D, Otto S, Jung C, Lauten A, Figulla HR, Edvardsen T, Poerner TC (2011) Detection of irregular patterns of myocardial contraction in patients with hypertensive heart disease: a two-dimensional ultrasound speckle tracking study. J Hypertens 29(11):2255–2264. doi:10.1097/HJH.0b013e32834bdd09

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Gaynor SL, Maniar HS, Prasad SM, Steendijk P, Moon MR (2005) Reservoir and conduit function of right atrium: impact on right ventricular filling and cardiac output. Am J Physiol Heart Circ Physiol 288(5):H2140–H2145. doi:10.1152/ajpheart.00566.200

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Greenberg NL, Firstenberg MS, Castro PL, Main M, Travaglini A, Odabashian JA, Drinko JK, Rodriguez LL, Thomas JD, Garcia MJ (2002) Doppler-derived myocardial strain rate is a strong index of left ventricular contractility. Circulation 105(1):99–105. doi:10.1161/hc0102.101396

    PubMed  Article  Google Scholar 

  16. 16.

    Hansen J, Sander M (2003) Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia. J Physiol 546(Pt 3):921–929. doi:10.1113/jphysiol.2002.031765

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Huez S, Retailleau K, Unger P, Pavelescu A, Vachiéry JL, Derumeaux G, Naeije R (2005) Right and left ventricular adaptation to hypoxia: a tissue Doppler imaging study. Am J Physiol Heart Circ Physiol 289(4):H1391–H1398. doi:10.1152/ajpheart.00332.2005

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Huez S, Faoro V, Guénard H, Martinot JB, Naeije R (2009) Echocardiographic and tissue Doppler imaging of cardiac adaptation to high altitude in native highlanders versus acclimatized lowlanders. Am J Cardiol 103(11):1605–1609. doi:10.1016/j.amjcard.2009.02.006

    PubMed  Article  Google Scholar 

  19. 19.

    Kaluzynski K, Chen X, Emelianov SY, Skovoroda AR, O’Donnell M (2001) Strain rate imaging using two-dimensional speckle tracking. IEEE Trans Ultrason Ferroelectr Freq Control 48(4):1111–1123. doi:10.1109/58.935730

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Kaufmann BA, Bernheim AM, Kiencke S, Fischler M, Sklenar J, Mairbäurl H, Maggiorini M, Brunner-La Rocca HP (2008) Evidence supportive of impaired myocardial blood flow reserve at high altitude in subjects developing high-altitude pulmonary edema. Am J Physiol Heart Circ Physiol 294(4):H1651–H1657. doi:10.1152/ajpheart.00760.2007

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Komniski MS, Yakushev S, Bogdanov N, Gassmann M, Bogdanova A (2011) Interventricular heterogeneity in rat heart responses to hypoxia: the tuning of glucose metabolism, ion gradients, and function. Am J Physiol Heart Circ Physiol 300(5):H1645–H1652. doi:10.1152/ajpheart.00220.2010

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise J, Solomon S, Spencer KT, St. John Sutton M, Stewart WJ (2006) Recommendations for chamber quantification. Eur J Echocardiogr 7(2):79–108. doi:10.1016/j.euje.2005.12.014

    PubMed  Article  Google Scholar 

  23. 23.

    Larsen KO, Sjaastad I, Svindland A, Krobert KA, Skjønsberg OH, Christensen G (2006) Alveolar hypoxia induces left ventricular diastolic dysfunction and reduces phosphorylation of phospholamban in mice. Am J Physiol Heart Circ Physiol 291(2):H507–H516. doi:10.1152/ajpheart.00862.2005

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Maniar HS, Prasad SM, Gaynor SL, Chu CM, Steendijk P, Moon MR (2003) Impact of pericardial restraint on right atrial mechanics during acute right ventricular pressure load. Am J Physiol Heart Circ Physiol 284(1):H350–H357. doi:10.1152/ajpheart.00444.2002

    PubMed  CAS  Google Scholar 

  25. 25.

    Naeije R, Mélot C, Mols P, Hallemans R (1982) Effects of vasodilators on hypoxic pulmonary vasoconstriction in normal man. Chest 82(4):404–410. doi:10.1378/chest.82.4.404

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Naghshin J, McGaffin KR, Witham WG, Mathier MA, Romano LC, Smith SH, Janczewski AM, Kirk JA, Shroff SG, O’Donnell CP (2009) Chronic intermittent hypoxia increases left ventricular contractility in C57BL/6 J mice. J Appl Physiol 107(3):787–793. doi:10.1152/japplphysiol.91256.2008

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Oliver RM, Peacock AJ, Challenor VF, Fleming JS, Waller DG (1991) The effect of acute hypoxia on right ventricular function in healthy adults. Int J Cardiol 31(2):235–241

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Quiñones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA (2002) Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr 15(2):167–184. doi:10.1067/mje.2002.120202

    PubMed  Article  Google Scholar 

  29. 29.

    Reeves JT, Groves BM, Sutton JR, Wagner PD, Cymerman A, Malconian MK, Rock PB, Young PM, Houston CS (1987) Operation Everest II: preservation of cardiac function at high altitude. J Appl Physiol 63(2):531–539

    PubMed  CAS  Google Scholar 

  30. 30.

    Saraiva RM, Demirkol S, Buakhamsri A, Greenberg N, Popović ZB, Thomas JD, Klein AL (2010) Left atrial strain measured by two-dimensional speckle tracking represents a new tool to evaluate left atrial function. J Am Soc Echocardiogr 23(2):172–180. doi:10.1016/j.echo.2009.11.003

    PubMed  Article  Google Scholar 

  31. 31.

    Suarez J, Alexander JK, Houston CS (1987) Enhanced left ventricular systolic performance at high altitude during Operation Everest II. Am J Cardiol 60(1):137–142. doi:10.1016/0002-9149(87)91000-9

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Vianna-Pinton R, Moreno CA, Baxter CM, Lee KS, Tsang TS, Appleton CP (2009) Two-dimensional speckle-tracking echocardiography of the left atrium: feasibility and regional contraction and relaxation differences in normal subjects. J Am Soc Echocardiogr 22(3):299–305. doi:10.1016/j.echo.2008.12.017

    PubMed  Article  Google Scholar 

  33. 33.

    Voeller RK, Aziz A, Maniar HS, Ufere NN, Taggar AK, Bernabe NJ Jr, Cupps BP, Moon MR (2011) Differential modulation of right ventricular strain and right atrial mechanics in mild vs. severe pressure overload. Am J Physiol Heart Circ Physiol 301(6):H2362–H2371. doi:10.1152/ajpheart.00138.2011

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Von Euler US, Liljestrand G (1946) Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand 12:301–320

    Article  Google Scholar 

  35. 35.

    Weidemann F, Jamal F, Sutherland GR, Claus P, Kowalski M, Hatle L, De Scheerder I, Bijnens B, Rademakers FE (2002) Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate. Am J Physiol Heart Circ Physiol 283(2):H792–H799. doi:10.1152/ajpheart.00025.2002

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Björn Goebel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goebel, B., Handrick, V., Lauten, A. et al. Impact of acute normobaric hypoxia on regional and global myocardial function: a speckle tracking echocardiography study. Int J Cardiovasc Imaging 29, 561–570 (2013). https://doi.org/10.1007/s10554-012-0117-2

Download citation

Keywords

  • Hypoxia
  • Myocardial function
  • Speckle tracking echocardiography