Skip to main content
Log in

Quantification of mitral valve regurgitation with color flow Doppler using baseline shift

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Vena contracta width (VCW) and effective regurgitant orifice area (EROA) are well established methods for evaluating mitral regurgitation using transesophageal echocardiography (TEE). For color-flow Doppler (CF) measurements Nyquist limit of 50–60 cm/s is recommended. Aim of the study was to investigate the effectiveness of a baseline shift of the Nyquist limit for these measurements. After a comprehensive 2-dimensional (2D) TEE examination, the mitral regurgitation jet was acquired with a Nyquist limit of 50 cm/s (NL50) along with a baseline shift to 37.5 cm/s (NL37.5) using CF. Moreover a real time 3-dimensional (RT 3D) color complete volume dataset was stored with a Nyquist limit of 50 cm/s (NL50) and 37.5 cm/s (NL37.5). Vena contracta width (VCW) as well as Proximal Isovelocity Surface Area (PISA) derived EROA were measured based on 2D TEE and compared to RT 3D echo measurements for vena contracta area (VCA) using planimetry method. Correlation between VCA 3D NL50 and VCW NL50 was 0.29 (p < 0.05) compared to 0.6 (p < 0.05) using NL37.5. Correlation between VCA 3D NL50 and EROA 2D NL50 was 0.46 (p < 0.05) vs. 0.6 (p < 0.05) EROA 2D NL37.5. Correlation between VCA 3D NL37.5 and VCW NL50 was 0.45 (p < 0.05) compared to 0.65 (p < 0.05) using VCW NL37.5. Correlation between VCA 3D NL37.5 and EROA 2D NL50 was 0.41 (p < 0.05) vs. 0.53 (p < 0.05) using EROA 2D NL37.5. Baseline shift of the NL to 37.5 cm/s improves the correlation for VCW and EROA when compared to RT 3D NL50 planimetry of the vena contracta area. Baseline shift in RT 3D to a NL of 37.5 cm/s shows similar results like NL50.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

VC:

Vena contracta

EROA:

Effective regurgitant orifice area

VCA:

Vena contracta area

TEE:

Transesophageal echocardiography

2D:

Two dimensional

3D:

Three dimensional

NL50:

Nyquist limit 50 cm/s

NL37.5:

Nyquist limit 37.5 cm/s

MR:

Mitral regurgitation

LA:

Left atrium

LV:

Left ventricle

CF:

Color flow

PW:

Pulsed wave

VCW:

Vena contracta width

CW:

Continuous wave

PISA:

Proximal isovelocity surface area

RT:

Realtime

MV:

Mitral valve

ME:

Midesophageal

LAX:

Long axis

ICC:

Intraclass correlation coefficient

References

  1. Enriquez-Sarano M, Sundt TM III (2010) Early surgery is recommended for mitral regurgitation. Circulation 121:804–811

    Article  PubMed  Google Scholar 

  2. Bonow RO, Carabello BA, Chatterjee K et al (2008) 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 52:e1–e142

    Article  PubMed  Google Scholar 

  3. Fehske W, Omran H, Manz M et al (1994) Color-coded Doppler imaging of the vena contracta as a basis for quantification of pure mitral regurgitation. Am J Cardiol 73:268–274

    Article  PubMed  CAS  Google Scholar 

  4. Hall SA, Brickner ME, Willett DL et al (1997) Assessment of mitral regurgitation severity by Doppler color flow mapping of the vena contracta. Circulation 95:636–642

    Article  PubMed  CAS  Google Scholar 

  5. Zoghbi WA, Enriquez-Sarano M, Foster E et al (2003) Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16:777–802

    Article  PubMed  Google Scholar 

  6. Schwammenthal E, Chen C, Benning F et al (1994) Dynamics of mitral regurgitant flow and orifice area. Physiologic application of the proximal flow convergence method: clinical data and experimental testing. Circulation 90:307–322

    Article  PubMed  CAS  Google Scholar 

  7. Simpson IA, Shiota T, Gharib M, Sahn DJ (1996) Current status of flow convergence for clinical applications: is it a leaning tower of “PISA”? J Am Coll Cardiol 27:504–509

    Article  PubMed  CAS  Google Scholar 

  8. Kahlert P, Plicht B, Schenk IM et al (2008) Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 21:912–921

    Article  PubMed  Google Scholar 

  9. Veronesi F, Corsi C, Sugeng L et al (2008) Quantification of mitral apparatus dynamics in functional and ischemic mitral regurgitation using real-time 3-dimensional echocardiography. J Am Soc Echocardiogr 21:347–354

    Article  PubMed  Google Scholar 

  10. Sugeng L, Chandra S, Lang RM (2009) Three-dimensional echocardiography for assessment of mitral valve regurgitation. Curr Opin Cardiol 24:420–425

    Article  PubMed  Google Scholar 

  11. Altiok E, Hamada S, van HS et al (2011) Comparison of direct planimetry of mitral valve regurgitation orifice area by three-dimensional transesophageal echocardiography to effective regurgitant orifice area obtained by proximal flow convergence method and vena contracta area determined by color Doppler echocardiography. Am J Cardiol 107:452–458

    Article  PubMed  Google Scholar 

  12. Shanewise JS, Cheung AT, Aronson S et al (1999) ASE/SCA guidelines for performing a comprehensive intraoperative multiplane transesophageal echocardiography examination: recommendations of the American Society of Echocardiography Council for Intraoperative Echocardiography and the Society of Cardiovascular Anesthesiologists Task Force for Certification in Perioperative Transesophageal Echocardiography. Anesth Analg 89:870–884

    PubMed  CAS  Google Scholar 

  13. Carpentier A (1983) Cardiac valve surgery–the “French correction”. J Thorac Cardiovasc Surg 86:323–337

    PubMed  CAS  Google Scholar 

  14. Grigioni F, Enriquez-Sarano M, Zehr KJ et al (2001) Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation 103:1759–1764

    Article  PubMed  CAS  Google Scholar 

  15. Zeng X, Levine RA, Hua L et al (2011) Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color doppler 3D echocardiography. Circ Cardiovasc Imaging 4:506–513

    Article  PubMed  Google Scholar 

  16. Khanna D, Vengala S, Miller AP et al (2004) Quantification of mitral regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area. Echocardiography 21:737–743

    Article  PubMed  Google Scholar 

  17. Iwakura K, Ito H, Kawano S et al (2006) Comparison of orifice area by transthoracic three-dimensional Doppler echocardiography versus proximal isovelocity surface area (PISA) method for assessment of mitral regurgitation. Am J Cardiol 97:1630–1637

    Article  PubMed  Google Scholar 

  18. Yosefy C, Hung J, Chua S et al (2009) Direct measurement of vena contracta area by real-time 3-dimensional echocardiography for assessing severity of mitral regurgitation. Am J Cardiol 104:978–983

    Article  PubMed  Google Scholar 

  19. Hien MD, Weymann A, Rauch H, et al. (2012) Comparison of intraoperative three-dimensional doppler color flow mapping to assess mitral regurgitation. Echocardiography. epub ahead of print

  20. Marsan NA, Westenberg JJM, Ypenburg C et al (2009) Quantification of functional mitral regurgitation by real-time 3d echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance. JACC Cardiovasc Imaging 2:1245–1252

    Article  PubMed  Google Scholar 

  21. Buck T, Plicht B, Kahlert P et al (2008) Effect of dynamic flow rate and orifice area on mitral regurgitant stroke volume quantification using the proximal isovelocity surface area method. J Am Coll Cardiol 52:767–778

    Article  PubMed  Google Scholar 

  22. Biner S, Rafique A, Rafii F et al (2010) Reproducibility of proximal isovelocity surface area, vena contracta, and regurgitant jet area for assessment of mitral regurgitation severity. JACC Cardiovasc Imaging 3:235–243

    Article  PubMed  Google Scholar 

  23. Utsunomiya T, Doshi R, Patel D et al (1993) Calculation of volume flow rate by the proximal isovelocity surface area method: simplified approach using color Doppler zero baseline shift. J Am Coll Cardiol 22:277–282

    Article  PubMed  CAS  Google Scholar 

  24. Shanks M, Siebelink HM, Delgado V et al (2010) Quantitative assessment of mitral regurgitation: comparison between three-dimensional transesophageal echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging 3:694–700

    Article  PubMed  Google Scholar 

  25. Grayburn PA, Bhella P (2010) Grading severity of mitral regurgitation by echocardiography: science or art? JACC Cardiovasc Imaging 3:244–246

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Ender.

Additional information

Hannah Heß and Sarah Eibel have equally contributed to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heß, H., Eibel, S., Mukherjee, C. et al. Quantification of mitral valve regurgitation with color flow Doppler using baseline shift. Int J Cardiovasc Imaging 29, 267–274 (2013). https://doi.org/10.1007/s10554-012-0084-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-012-0084-7

Keywords

Navigation