Skip to main content
Log in

Quantification of myocardial perfusion reserve at 1.5 and 3.0 Tesla: a comparison to fractional flow reserve

  • Original paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The objective of this study was to compare quantitative analysis of cardiac magnetic resonance (CMR) perfusion at 1.5 and 3 T against fractional flow reserve (FFR) as measured invasively. FFR is considered by many investigators to be a reliable standard to determine hemodynamically significant coronary artery stenoses. Quantitative 1.5 and 3 T CMR is capable to noninvasively determine myocardial perfusion reserve, but have not been compared against each other and validated against FFR as standard reference. Patients with suspected or known coronary artery disease (CAD) underwent CMR at at both field strengths, 1.5 and 3 T, and FFR. 34 patients were included into the study. Quantitative myocardial perfusion reserve was calculated in 544 myocardial segments at 1.5 and 3 T, respectively. FFR was measured in 109 coronary arteries. FFR ≤ 0.8 was regarded relevant. Reduced FFR (≤0.8) was found in 38 coronary arteries (19 LAD, 8 LCX and 11 RCA). Receiver operator curve analysis yielded higher area under the curve for 3 T CMR in comparison to 1.5 T CMR (0.963 vs. 0.645, p < 0.001) resulting in higher sensitivity (90.5 vs. 61.9 %) and specificity (100 vs. 76.9 %). Quantitative analysis of CMR myocardial perfusion reserve at 1.5 and 3 T is capable to detect hemodynamic significance of coronary artery stenoses. Diagnostic accuracy at 3 T is to be superior to 1.5 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shaw LJ, Hachamovitch R, Heller GV, Marwick TH, Travin MI, Iskandrian AE, Kesler K, Lauer MS, Hendel R, Borges-Neto S, Lewin HC, Berman DS, Miller D (2000) Noninvasive strategies for the estimation of cardiac risk in stable chest pain patients. The Economics of Noninvasive Diagnosis (END) Study Group. Am J Cardiol 86:1–7

    Article  PubMed  CAS  Google Scholar 

  2. Beller GA, Zaret BL (2000) Contributions of nuclear cardiology to diagnosis and prognosis of patients with coronary artery disease. Circulation 101:1465–1478

    Article  PubMed  CAS  Google Scholar 

  3. Gibbons RS (1996) American Society of Nuclear Cardiology project on myocardial perfusion imaging: measuring outcomes in response to emerging guidelines. J Nucl Cardiol 3:436–442

    Article  PubMed  CAS  Google Scholar 

  4. Bech GJ, De Bruyne B, Bonnier HJ, Bartunek J, Wijns W, Peels K, Heyndrickx GR, Koolen JJ, Pijls NH (1998) Long-term follow-up after deferral of percutaneous transluminal coronary angioplasty of intermediate stenosis on the basis of coronary pressure measurement. J Am Coll Cardiol 31:841–847

    Article  PubMed  CAS  Google Scholar 

  5. Rieber J, Schiele TM, Koenig A, Erhard I, Segmiller T, Stempfle HU, Theisen K, Jung P, Siebert U, Klauss V (2002) Long-term safety of therapy stratification in patients with intermediate coronary lesions based on intracoronary pressure measurements. Am J Cardiol 90:1160–1164

    Article  PubMed  Google Scholar 

  6. Pijls NH, Klauss V, Siebert U, Powers E, Takazawa K, Fearon WF, Escaned J, Tsurumi Y, Akasaka T, Samady H, De Bruyne B (2002) Coronary pressure measurement after stenting predicts adverse events at follow-up: a multicenter registry. Circulation 105:2950–2954

    Article  PubMed  Google Scholar 

  7. Bernhardt P, Steffens M, Kleinertz K, Morell R, Budde R, Leischik R, Krämer A, Overhoff U, Strohm O (2006) Safety of adenosine stress magnetic resonance imaging using a mobile cardiac magnetic resonance system. J Cardiovasc Magn Reson 8:475–478

    Article  PubMed  Google Scholar 

  8. Schwitter J, Nanz D, Kneifel S, Bertschinger K, Buchi M, Knusel PR, Marincek B, Luscher TF, von Schulthess GK (2001) Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 103:2230–2235

    Article  PubMed  CAS  Google Scholar 

  9. Ishida N, Sakuma H, Motoyasu M, Okinaka T, Isaka N, Nakano T, Takeda K (2003) Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography. Radiology 229:209–216

    Article  PubMed  Google Scholar 

  10. Al Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, Klimek W, Oswald H, Fleck E (2000) Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101:1379–1383

    Article  PubMed  CAS  Google Scholar 

  11. Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K, Fleck E (2003) Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 108:432–437

    Article  PubMed  Google Scholar 

  12. Merkle N, Wöhrle J, Grebe O, Nusser T, Kunze M, Kestler HA, Kochs M, Hombach V (2007) Assessment of myocardial perfusion to detect coronary artery stenoses by steady-state-free-precession magnetic resonance first-pass imaging. Heart 93:1381–1385

    Article  PubMed  Google Scholar 

  13. Bernhardt P, Levenson B, Albrecht A, Engels T, Strohm O (2007) Detection of cardiac small vessel disease by adenosine-stress magnetic resonance. Int J Cardiol 121:261–266

    Article  PubMed  Google Scholar 

  14. Wilke NM, Jerosch-Herold M, Zenovisch A, Stillman AE (1999) Magnetic resonance first-pass myocardial perfusion imaging: clinical validation and future applications. J Magn Reson Imaging 10:676–685

    Article  PubMed  CAS  Google Scholar 

  15. Lee DC, Simonetti OP, Harris KR, Holly TA, Judd RM, Wu E, Klocke FJ (2004) Magnetic resonance versus radionuclide pharmacological stress perfusion imaging for flow limiting stress stenoses of varying severity. Circulation 110:48–65

    Google Scholar 

  16. Rieber J, Huber A, Erhard I, Mueller S, Schweyer M, Koenig A, Schiele TM, Theisen K, Siebert U, Schoenberg SO, Reiser M, Klauss V (2006) Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: a comparison with coronary angiography and fractional flow reserve. Eur Heart J 27:1465–1471

    Article  PubMed  Google Scholar 

  17. Costa MA, Shoemaker S, Futumatsu H, Klassen C, Angiolillo DJ, Nguyen M, Siuciak A, Gilmore P, Zenni MM, Guzman L, Bass TA, Wilke N (2007) Quantitative magnetic resonance perfusion imaging detects anatomic and physiologic coronary artery disease as measured by coronary angiography and fractional flow reserve. J Am Coll Cardiol 50:514–522

    Article  PubMed  Google Scholar 

  18. Watkins S, McGeoch R, Lyne J, Steedman T, Good R, McLaughlin MJ, Cunningham T, Bezlyak V, Ford I, Dargie HJ, Oldroyd KG (2009) Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease. Circulation 120:2207–2213

    Article  PubMed  Google Scholar 

  19. Wen H, Denison TJ, Singerman RW, Balaban RS (1997) The intrinsic signal-to-noise ratio in human cardiac imaging at 1.5, 3, and 4 T. J Magn Reson 125:65–71

    Article  PubMed  CAS  Google Scholar 

  20. Greenman RL, Shirosky JE, Mulkern RV, Rofsky NM (2003) Double inversion black-blood fast spin-echo imaging of the human heart: a comparison between 1.5T and 3.0T. J Magn Reson Imaging 17:648–655

    Article  PubMed  Google Scholar 

  21. Araoz PA, Glockner JF, McGee KP, Potter DD Jr, Valeti VU, Stanley DW, Christian TF (2005) 3 Tesla MR imaging provide improved contrast in first-pass myocardial perfusion imaging over a range of gadolinium doses. J Cardiovasc Magn Reson 7:559–565

    Article  PubMed  Google Scholar 

  22. Cheng ASH, Pegg TJ, Karamitsos TD, Searle N, Jerosch-Herold M, Choudhury RP, Banning AP, Neubauer S, Robson MD, Selvanayagam JB (2007) Cardiovascular magnetic resonance perfusion imaging at 3-Tesla for the detection of coronary artery disease. J Am Coll Cardiol 49:2440–2449

    Article  PubMed  Google Scholar 

  23. Koenig W, Khuseyinova N (2007) Biomarkers of atherosclerotic plaque instability and rupture. Arterioscler Thromb Vasc Biol 27:15–26

    Article  PubMed  CAS  Google Scholar 

  24. Assmann G, Cullen P, Schulte H (2002) Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the Prospective Cardiovascular Münster (PROCAM) study. Circulation 105:310–315

    Article  PubMed  Google Scholar 

  25. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology at the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  26. Ortiz-Pérez JT, Rodríguez J, Meyers SN, Lee DC, Davidson C, Wu E (2008) Correspondence between the 17-segment model and coronary arterial anatomy using contrast-enhanced cardiac magnetic resonance imaging. J Am Coll Cardiol Img 1:282–293

    Google Scholar 

  27. Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, Klimek W, Oswald H, Fleck E (2000) Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101:1379–1383

    Article  PubMed  CAS  Google Scholar 

  28. Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL (1993) Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 86:1354–1367

    Article  Google Scholar 

  29. Lockie T, Ishida M, Perera D, Chiribiri A, De Silva K, Kozerke S, Marber M, Nagel E, Rezavi R, Redwood S, Plein S (2011) High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol 57:70–75

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bernhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernhardt, P., Walcher, T., Rottbauer, W. et al. Quantification of myocardial perfusion reserve at 1.5 and 3.0 Tesla: a comparison to fractional flow reserve. Int J Cardiovasc Imaging 28, 2049–2056 (2012). https://doi.org/10.1007/s10554-012-0037-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-012-0037-1

Keywords

Navigation