Skip to main content

Advertisement

Log in

Oblique 3D MRI tags for the estimation of true 3D cardiac motion parameters

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Aim of this study is to demonstrate the advantages of oblique 3D tags in cardiac magnetic resonance imaging (MRI) and the potential to accurately describe the complex motion of the myocardial wall. 3D cardiac Cine data were densely tagged with 3D oblique tags. The latter were tracked using Gabor analysis and active geometries. From the tag intersections, common 2D parameters such as long axis shortening, radial shortening and rotation were evaluated on a global as well as detailed local level. Finally, the same data were used to estimate left ventricular volume change and myocardial stress/strain. We have successfully tracked dense 3D tags and evaluated common parameters on a detailed local level. In addition, inherently 3D parameters could be estimated. Global motion data are in accordance with previously published data. Oblique tags allow for unambiguous localization of the tag plane in all MRI slices and in any time frame. In contrast to HARP, our tag tracking methodology allows for tracking of the tags even when they are dense. Motion parameters can be extracted in greater detail. Moreover, the intersections of dense oblique 3D tags provide a natural basis for a finite element model of the heart. Straight forward access to the 3D characteristics of the cardiac motion is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Allouche CF, Markram-Ebeid S, Stuber M, Ayache N, Delingette H (2001) A new kinetic modeling scheme for the human left ventricle wall motion analysis in MR-tagging imaging. CARS’2001 1230:911–916

    Google Scholar 

  2. Allouche CF, Markram-Ebeid S, Stuber M, Ayache N, Delingette H (2001) New methods and algorithms for the accurate real-time, motion analysis of the left ventricle with MRI tagging. CARS’2001 1230:954–960

    Google Scholar 

  3. Ashikaga H, Coppola BA, Yamazaki KG, Villarreal FJ, Omens JH, Covell JW (2008) Changes in regional myocardial volume during the cardiac cycle: implications for transmural blood flow and cardiac structure. Am J Physiol Heart Circ Physiol 295:H610–H618

    Article  CAS  PubMed  Google Scholar 

  4. Axel L, Chung S, Chen T (2007) Tagged MRI analysis using gabor filters. In: 4th IEEE international symposium on biomedical imaging: from nano to macro (ISBI), pp 684–687

  5. Axel L, Dougherty L (1989) MR imaging of motion with spatial modulation of magnetization. Radiology 171:841–845

    CAS  PubMed  Google Scholar 

  6. Axel L, Montillo A, Kim D (2005) Tagged magnetic resonance imaging of the heart: a survey. Med Imaging Anal 9:376–393

    Article  Google Scholar 

  7. Bertini M, Marsan NA, Delgado V, vanBommel RJ, Nucifora G, Borleffs CJW, Boriani G, Biffi M, Holman ER, VanDerWall EE, Schalij MJ, Bax JJ (2009) Effects of cardiac resynchronization therapy on left ventricular twist. JACC 54:1317–1325

    PubMed  Google Scholar 

  8. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Scientific statement/standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  9. Chen T, Chung S, Axel L (2007) Automated tag tracking using gabor filter bank, robust point matching, and deformable models. In: Sachse FB, Seemann G (eds) Proceedings of the 4th international conference on functional imaging and modeling of the heart (FIMH), pp 22–31

  10. Declerck J, Ayache N, McVeigh E (1998) Use of a 4D planispheric transformation for the tracking and the analysis of LV motion with tagged MR images. Technical Report 3535. Sophia-Antipolis: INRIA 74:186–191

    Google Scholar 

  11. Dong L, Zhang F, Shu X, Guan L, Chen H (2009) Left ventricular torsion in patients with secundum atrial septal defect. Circ J 73:1308 – 1314

    Article  PubMed  Google Scholar 

  12. Dong L, Zhang F, Shu X, Zhou D, Guan L, Pan C, Chen H (2009) Left ventricular torsional deformation in patients undergoing transcatheter closure of secundum atrial septal defect. Int J Cardiovasc Imaging 25:479–486

    Article  PubMed  Google Scholar 

  13. Dou J, Tseng W, Reese T, Wedeen V (2003) Combined diffusion and strain MRI reveals structure and function of human myocardial laminar sheets in vivo. Magn Reson Med 50:107–113

    Article  PubMed  Google Scholar 

  14. Geleijnse ML, VanDalen BM (2008) Let’s twist. Eur J Echocardiogr 10:46–47

    Article  PubMed  Google Scholar 

  15. Guttman MA, Prince JL, McVeigh ER (1994) Tag and contour detection in tagged MR images of the left ventricle. IEEE Trans Med Imaging 13:74–88

    Article  CAS  PubMed  Google Scholar 

  16. Haber I, Metaxas DN, Axel L (2000) Using tagged MRI to reconstruct a 3D heartbeat. IEEE Comput Sci Eng 2:18–30

    Google Scholar 

  17. Han W, Xie M, Wang X, Lü Q (2008) Assessment of left ventricular global twist in essential hypertensive heart by speckle tracking imaging. Med Sci 28:114–117

    Google Scholar 

  18. Kass M, Witkin A, Terzopoulos D (1987) Snake: active contour models. Intl J Comp Vis 1:321–331

    Article  Google Scholar 

  19. Kraitchman D, Young A, Axel L (1995) Semi-automated tracking of myocardial motion in MR tagged images. IEEE Trans Med Imaging 14:422–433

    Article  CAS  PubMed  Google Scholar 

  20. Liang J, Wang Y, Jia Y (2007) Cardiac motion estimation from tagged MRI using 3D-HARP and NURBS volumetric model. In: Yagi Y, Kang SB, Kweon I-S, Zha H (eds) Computer vision - ACCV 2007, 8th Asian conference on computer vision, Tokyo, Japan, November 18–22, 2007, Proceedings (ACCV) (1), pp 512–521

  21. Maffessanti F, Nesser HJ, Weinert L, Steringer-Mascherbauer R, Niel J, Gorissend W, Sugeng L, Lang RM, Mor-Avi V (2009) Quantitative evaluation of regional left ventricular function using three-dimensional speckle tracking echocardiography in patients with and without heart disease. Am J Card 104:1755–1762

    Article  PubMed  Google Scholar 

  22. Maier SE, Fischer SE, McKinnon GC, Hess OM, Krayenbuehl HP, Boesiger P (1992) Evaluation of left ventricular segmental wall motion in hypertrophic cardiomyopathy with myocardial tagging. Circulation 86:1919–1928

    CAS  PubMed  Google Scholar 

  23. Montillo A, Axel L, Metaxas D (2003) Automated correction of background intensity variation and image scale standardization in 4D cardiac SPAMM-MRI. Proc Intl Soc Mag Reson Med 11, p 708

    Google Scholar 

  24. Moore CC, Lugo-Olivieri CH, McVeigh ER, Zerhouni EA (1988) Three-dimensional systolic strain patterns in the normal human left ventricle: characterization with tagged MR imaging. Radiology 214:453–466

    Google Scholar 

  25. Nyul LG, Udupa JK, Zhang X (2000) New variants of a method of MRI scale standardization. IEEE Trans Med Imaging 19:143–150

    Article  CAS  PubMed  Google Scholar 

  26. Osman NF, Kerwin WS, McVeigh ER, Prince JL (1999) Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med 42:1048–1060

    Article  CAS  PubMed  Google Scholar 

  27. Pan L, Prince JL, Lima JA, Osman NF (2005) Fast tracking of cardiac motion using 3D-HARP. IEEE Trans Biomed Eng 52:1425–1435

    Article  PubMed  Google Scholar 

  28. Park J, Metaxas D, Axel L (1996) Analysis of left ventricular wall motion based on volumetric deformable models and MRI-SPAMM. Med Imaging Anal 1:53–71

    Article  CAS  Google Scholar 

  29. Petitjean C, Rougon N, Cluzel P (2005) Assessment of myocardial function: a review of quantification methods and results using tagged MRI. J Card Mag Res 7:501–516

    Article  Google Scholar 

  30. Puwanant S, Park M, Popovic ZB, Tang WH Wilson, Farha S, George D, Sharp J, Puntawangkoon J, Loyd JE, Erzurum SC, Thomas JD (2010) Ventricular geometry, strain, and rotational mechanics in pulmonary hypertension. Circulation 121:259–266

    Article  PubMed  Google Scholar 

  31. Qian Z, Montillo A, Metaxas D, Axel L (2003) Segmenting cardiac MRI tagging lines using gabor filter bank matching, and deformable models. In: Proceedings of international conference of the engineering in medicine and biology society, pp 630–633

  32. Reddy JN (2004) An introduction to the finite element method. McGraw-Hill Science Engineering, New York

    Book  Google Scholar 

  33. Rutz AK, Ryf S, Plein S, Boesiger P, Kozerke SR, Tennant, Wiggers CJ (2008) Accelerated whole-heart 3D CSPAMM for myocardial motion quantification. Magn Reson Med 59:755–763

    Article  PubMed  Google Scholar 

  34. Ryf S, Spiegel MA, Gerber M, Boesiger P (2002) Myocardial tagging with 3D-CSPAMM. J Magn Reson Imaging 16:320–325

    Article  PubMed  Google Scholar 

  35. Sade LE, Demir O, Atar I, Muderrisoglu H, Ozin B (2008) Effect of mechanical dyssynchrony and cardiac resynchronization therapy on left ventricular rotational mechanics. Am J Cardiol 101:1163–1169

    Article  PubMed  Google Scholar 

  36. Shimizu Y, Amano A, Kin Y, Matsuda T (2007) A tracking algorithm for three dimensional tags in cardiac MRI. Proc Intl Soc Mag Reson Med 15:2547

    Google Scholar 

  37. Takahashi K, Al Naami G, Thompson R, Inage A, Mackie AS, Smallhorn JF (2009) Normal rotational, torsion and untwisting data in children, adolescents and young adults. JASE 23:286–293

    Google Scholar 

  38. Tennant R, Wiggers CJ (1932) The effect of coronary occlusion on myocardial contraction. Am J Physiol 112:351–361

    Google Scholar 

  39. Young A, Kraitchman D, Dougherty L et al (1995) Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. IEEE Trans Med Imaging 14:413–421

    Article  CAS  PubMed  Google Scholar 

  40. Young A, Kraitchman D, Dougherty L et al (1995) Tracking and finite element analysis of stripe deformation in magnetic resonance tagging. IEEE Trans Med Imaging 14:413–421

    Article  CAS  PubMed  Google Scholar 

  41. Zerhouni E, Parish D, Rogers W et al (1988) Human heart: tagging with MR imaging—a method for non-invasive assessment of myocardial motion. Radiology 169:59–63

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The first author was supported by the Japan Society for the Promotion of Science (Grant in Aid for Scientific Researchers). Thanks to Dr Leon Axel for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Shimizu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, Y., Amano, A. & Matsuda, T. Oblique 3D MRI tags for the estimation of true 3D cardiac motion parameters. Int J Cardiovasc Imaging 26, 905–921 (2010). https://doi.org/10.1007/s10554-010-9646-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-010-9646-8

Keywords

Navigation