Skip to main content

New radiation dose saving technologies for 256-slice cardiac computed tomography angiography

Abstract

Purpose This paper aims to evaluate the dose reductions conferred by spiral dynamic z-collimation and axial adaptive z-collimation for retrospectively and prospectively ECG-referenced cardiac CTA, respectively, on a wide coverage, 256-slice CT scanner. Methods Using typical data presented in the literature, a distribution of cardiac CT scan lengths was synthesized. To isolate the effect of z-overscan on effective radiation dose, 1,000 simulated patient scan lengths were then randomly sampled from this distribution and used for subsequent analysis. Results Retrospectively ECG-gated spiral scans with dynamic z-collimation resulted in a mean relative effective dose reduction of 11.7 and 24.3% for MDCT with 40 and 80 mm z-axis detector coverage, respectively. Mean relative dose reduction of prospectively ECG-triggered axial scans with adaptive z-collimation on an 80 mm coverage scanner was 10.0%. Conclusion Dynamic z-collimation for retrospectively ECG-gated spiral scanning and adaptive z-collimation for prospectively ECG-triggered axial scanning are both associated with a significant dose reduction on a wide coverage, 256-slice CT scanner.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52:1724–1732. doi:10.1016/j.jacc.2008.07.031

    PubMed  Article  Google Scholar 

  2. Watkins MW, Hesse B, Green CE et al (2007) Detection of coronary artery stenosis using 40-channel computed tomography with multi-segment reconstruction. Am J Cardiol 99:175–181. doi:10.1016/j.amjcard.2006.07.081

    PubMed  Article  Google Scholar 

  3. Garcia MJ, Lessick J, Hoffmann MHK et al (2006) Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis. JAMA 296:403–411. doi:10.1001/jama.296.4.403

    PubMed  Article  CAS  Google Scholar 

  4. Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487. doi:10.1093/eurheartj/ehi261

    PubMed  Article  Google Scholar 

  5. Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336. doi:10.1056/NEJMoa0806576

    PubMed  Article  CAS  Google Scholar 

  6. Phurrough SE, Salive ME, Baldwin J et al. (2008) Decision memo for computed tomographic angiography (CAG-00385 N). In: Medicare National Coverage Determinations Manual. Sect. 220.1F. CMS publication 100-03. Centers for Medicare & Medicaid Services, Baltimore, MD, USA. http://www.cms.hhs.gov/mcd/viewdecisionmemo.asp?id=206. Accessed December 7, 2008

  7. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284. doi:10.1056/NEJMra072149

    PubMed  Article  CAS  Google Scholar 

  8. Budoff MJ, Achenbach S, Blumenthal RS et al (2006) Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation 114:1761–1791. doi:10.1161/CIRCULATIONAHA.106.178458

    PubMed  Article  Google Scholar 

  9. Einstein AJ, Moser KW, Thompson RC et al (2007) Radiation dose to patients from cardiac diagnostic imaging. Circulation 116:1290–1305. doi:10.1161/CIRCULATIONAHA.107.688101

    PubMed  Article  Google Scholar 

  10. Paul JF, Abada HT (2007) Strategies for reduction of radiation dose in cardiac multislice CT. Eur Radiol 17:2028–2037. doi:10.1007/s00330-007-0584-3

    PubMed  Article  Google Scholar 

  11. Coles DR, Smail MA, Negus IS et al (2006) Comparison of radiation doses from multislice computed tomography coronary angiography and conventional diagnostic angiography. J Am Coll Cardiol 47:1840–1845. doi:10.1016/j.jacc.2005.11.078

    PubMed  Article  Google Scholar 

  12. Greess H, Nömayr A, Wolf H et al (2002) Dose reduction in CT examination of children by an attenuation-based on-line modulation of tube current (CARE Dose). Eur Radiol 12:1571–1576. doi:10.1007/s00330-001-1255-4

    PubMed  Article  Google Scholar 

  13. Kalra MK, Maher MM, Toth TL et al (2004) Comparison of Z-axis automatic tube current modulation technique with fixed tube current CT scanning of abdomen and pelvis. Radiology 232:347–353. doi:10.1148/radiol.2322031304

    PubMed  Article  Google Scholar 

  14. Deetjen A, Möllmann S, Conradi G et al (2007) Use of automatic exposure control in multislice computed tomography of the coronaries: comparison of 16-slice and 64-slice scanner data with conventional coronary angiography. Heart 93:1040–1043. doi:10.1136/hrt.2006.103838

    PubMed  Article  Google Scholar 

  15. Kalra MK, Maher MM, Toth TL et al (2004) Techniques and applications of automatic tube current modulation for CT. Radiology 233:649–657. doi:10.1148/radiol.2333031150

    PubMed  Article  Google Scholar 

  16. Kalender WA, Wolf H, Suess C et al (1999) Dose reduction in CT by on-line tube current control: principles and validation on phantoms and cadavers. Eur Radiol 9:323–328. doi:10.1007/s003300050674

    PubMed  Article  CAS  Google Scholar 

  17. Gies M, Kalender WA, Wolf H et al (1999) Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies. Med Phys 26:2235–2247. doi:10.1118/1.598779

    CAS  Google Scholar 

  18. Greess H, Lutze J, Nömayr A et al (2004) Dose reduction in subsecond multislice spiral CT examination of children by online tube current modulation. Eur Radiol 14:995–999. doi:10.1007/s00330-004-2301-9

    PubMed  Article  CAS  Google Scholar 

  19. Poll LW, Cohnen M, Brachten S et al (2002) Dose reduction in multi-slice CT of the heart by use of ECG-controlled tube current modulation (“ECG pulsing”): phantom measurements. Rofo 174:1500–1505

    PubMed  CAS  Google Scholar 

  20. Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310. doi:10.1161/CIRCULATIONAHA.105.602490

    PubMed  Article  Google Scholar 

  21. Gutstein A, Dey D, Cheng V et al (2008) Algorithm for radiation dose reduction with helical dual source coronary computed tomography angiography in clinical practice. J Cardiovasc Comput Tomogr 2:311–322. doi:10.1016/j.jcct.2008.07.003

    PubMed  Article  Google Scholar 

  22. Nakayama Y, Awai K, Funama Y et al (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237:945–951. doi:10.1148/radiol.2373041655

    PubMed  Article  Google Scholar 

  23. Earls JP, Berman EL, Urban BA et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246:742–753. doi:10.1148/radiol.2463070989

    PubMed  Article  Google Scholar 

  24. Gutstein A, Wolak A, Lee C et al (2008) Predicting success of prospective and retrospective gating with dual-source coronary computed tomography angiography: development of selection criteria and initial experience. J Cardiovasc Comput Tomogr 2:81–90

    PubMed  Article  Google Scholar 

  25. Hirai N, Horiguchi J, Fujioka C et al (2008) Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology 248:424–430. doi:10.1148/radiol.2482071804

    PubMed  Article  Google Scholar 

  26. Husmann L, Valenta I, Gaemperli O et al (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 29:191–197. doi:10.1093/eurheartj/ehm613

    PubMed  Article  Google Scholar 

  27. Klass O, Jeltsch M, Feuerlein S et al. (2008) Prospectively gated axial CT coronary angiography: preliminary experiences with a novel low-dose technique. Eur Radiol. doi:10.1007/s00330-008-1222-4

    Google Scholar 

  28. Rybicki FJ, Otero HJ, Steigner ML et al (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24:535–546. doi:10.1007/s10554-008-9308-2

    PubMed  Article  Google Scholar 

  29. Scheffel H, Alkadhi H, Leschka S et al (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94:1132–1137. doi:10.1136/hrt.2008.149971

    PubMed  Article  CAS  Google Scholar 

  30. Shuman WP, Branch KR, May JM et al (2008) Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 248:431–437. doi:10.1148/radiol.2482072192

    PubMed  Article  Google Scholar 

  31. Stolzmann P, Leschka S, Scheffel H et al (2008) Dual-source CT in step-and-shoot mode: noninvasive coronary angiography with low radiation dose. Radiology 249:71–80. doi:10.1148/radiol.2483072032

    PubMed  Article  Google Scholar 

  32. Hsieh J, Londt J, Vass M et al (2006) Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33:4236–4248. doi:10.1118/1.2361078

    PubMed  Article  Google Scholar 

  33. Toth TL, Cesmeli E, Ikhlef A et al. (2005) Image quality and dose optimization using novel x-ray source filters tailored to patient size. In: Flynn MJ (ed) Proceedings of the SPIE. Medical Imaging 2005: Physics of Medical Imaging, vol 5745. SPIE Press, Bellingham, WA, USA, pp 283–291

  34. Kalender W (2008) Cardiac and thoracic CT should be carried out at low voltages. In: Glazer GM, Rubin GD (eds) Proceedings of the 10th Annual International Symposium on Multidetector-row CT. Available online at http://radiologycme.stanford.edu/2008mdct/handouts/

  35. Flohr TG, Schaller S, Stierstorfer K et al (2005) Multi-detector row CT systems and image-reconstruction techniques. Radiology 235:756–773. doi:10.1148/radiol.2353040037

    PubMed  Article  Google Scholar 

  36. Nicholson R, Fetherston S (2002) Primary radiation outside the imaged volume of a multislice helical CT scan. Br J Radiol 75:518–522

    PubMed  CAS  Google Scholar 

  37. Goodman-Mumma C (2006) CT dose optimization. Med Imaging http://www.medicalimagingmag.com/issues/articles/2006-06_01.asp. Accessed 12 Dec 2008

  38. Rydberg J, Buckwalter KA, Caldemeyer KS et al (2000) Multisection CT: scanning techniques and clinical applications. Radiographics 20:1787–1806

    PubMed  CAS  Google Scholar 

  39. Dewey M, Hoffmann H, Hamm B (2007) CT coronary angiography using 16 and 64 simultaneous detector rows: intraindividual comparison. Rofo 179:581–586

    PubMed  CAS  Google Scholar 

  40. Grass M, Manzke R, Nielsen T et al (2003) Helical cardiac cone beam reconstruction using retrospective ECG gating. Phys Med Biol 48:3069–3084. doi:10.1088/0031-9155/48/18/308

    PubMed  Article  CAS  Google Scholar 

  41. Manzke R, Koken P, Hawkes D et al (2005) Helical cardiac cone beam CT reconstruction with large area detectors: a simulation study. Phys Med Biol 50:1547–1568. doi:10.1088/0031-9155/50/7/016

    PubMed  Article  CAS  Google Scholar 

  42. Grass M, Köhler T, Proksa R (2000) 3D cone-beam CT reconstruction for circular trajectories. Phys Med Biol 45:329–347. doi:10.1088/0031-9155/45/2/306

    PubMed  Article  CAS  Google Scholar 

  43. Hausleiter J, Meyer T, Hermann F et al (2008) International prospective multicenter study on radiation dose estimates of coronary CT angiography in daily practice—the PROTECTION I study. J Am Coll Cardiol 51(suppl A):A137 (abstract)

    Google Scholar 

  44. Achenbach S, Ulzheimer S, Baum U et al (2000) Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation 102:2823–2828

    PubMed  CAS  Google Scholar 

  45. Hausleiter J, Meyer T, Hadamitzky M et al (2007) Non-invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: the coronary angiography by computed tomography with the use of a submillimeter resolution (CACTUS) trial. Eur Heart J 28:3034–3041. doi:10.1093/eurheartj/ehm150

    PubMed  Article  Google Scholar 

  46. Dewey M, Teige F, Laule M et al (2007) Influence of heart rate on diagnostic accuracy and image quality of 16-slice CT coronary angiography: comparison of multisegment and halfscan reconstruction approaches. Eur Radiol 17:2829–2837. doi:10.1007/s00330-007-0685-z

    PubMed  Article  Google Scholar 

  47. Sato Y, Matsumoto N, Kato M et al (2003) Noninvasive assessment of coronary artery disease by multislice spiral computed tomography using a new retrospectively ECG-gated image reconstruction technique. Circ J 67:401–405. doi:10.1253/circj.67.401

    PubMed  Article  Google Scholar 

  48. Willmann JK, Weishaupt D, Lachat M et al (2002) Electrocardiographically gated multi-detector row CT for assessment of valvular morphology and calcification in aortic stenosis. Radiology 225:120–128. doi:10.1148/radiol.2251011703

    PubMed  Article  Google Scholar 

  49. Hausleiter J, Meyer T (2008) Tips to minimize radiation exposure. J Cardiovasc Comput Tomogr 2:325–327. doi:10.1016/j.jcct.2008.08.012

    PubMed  Article  Google Scholar 

  50. Halliburton SS (2008) One-scan protocol does not fit all: responsible cardiovascular imaging with computed tomography. J Cardiovasc Comput Tomogr 2:323–324. doi:10.1016/j.jcct.2008.08.009

    PubMed  Article  Google Scholar 

  51. McCollough C, Cody D, Edyvean S et al. (2008) The measurement, reporting, and management of radiation dose in CT. Tech. Rep. 96 American Association of Physicists in Medicine, College Park, MD, USA

  52. Shrimpton PC (2004) Assessment of patient dose in CT. Tech. Rep. NRPB-PE/1/2004 National Radiological Protection Board, Health Protection Agency, London, UK

  53. Jakobs TF, Becker CR, Ohnesorge B et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12:1081–1086. doi:10.1007/s00330-001-1278-x

    PubMed  Article  Google Scholar 

  54. Leschka S, Scheffel H, Desbiolles L et al (2007) Image quality and reconstruction intervals of dual-source CT coronary angiography: recommendations for ECG-pulsing windowing. Invest Radiol 42:543–549. doi:10.1097/RLI.0b013e31803b93cf

    PubMed  Article  Google Scholar 

Download references

Conflict of interest

Matthew J. Walker and Mark E. Olszewski are employees of Philips Healthcare (Cleveland, OH, USA) and led the data simulation and statistical analysis. All authors reviewed and confirmed the results, and Scott D. Flamm takes scientific responsibility for data integrity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott D. Flamm.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Walker, M.J., Olszewski, M.E., Desai, M.Y. et al. New radiation dose saving technologies for 256-slice cardiac computed tomography angiography. Int J Cardiovasc Imaging 25 (Suppl 2), 189 (2009). https://doi.org/10.1007/s10554-009-9444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10554-009-9444-3

Keywords

  • 256-Slice MDCT
  • Prospective triggering
  • Retrospective gating
  • Radiation exposure
  • Radiation reduction
  • Coronary CT angiography
  • Step-and-shoot
  • Low dose
  • Dose efficiency