Skip to main content
Log in

Visualization of three-dimensional cardiac electrical excitation using standard heart model and anterior and posterior magnetocardiogram

  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Our aim in this study is to obtain novel three-dimensional (3-D) images of cardiac electrical excitation that include morphological information on the whole heart. We obtain these 3-D images by projecting anterior and posterior two-dimensional (2-D) current-arrow maps (CAMs) onto a 3-D standard heart model. This standard heart model is adjusted to the individual subject’s heart position by using the coordinates of the sinus node, which are obtained from magnetocardiogram (MCG) signals. The anterior and posterior CAMs are calculated by taking the orthogonal partial derivatives of the normal component of the anterior and posterior MCGs. After adjusting the base current values of the anterior and posterior CAMs, the adjusted CAMs are projected onto the standard heart model. We generated the projected CAMs (PCAMs) of the six phases (atrial, and ventricular, excitation) for seven healthy subjects. The validity of PCAM was evaluated by extracting the maximal current directions and positions from the PCAMs. The maximal current directions and positions during each excitation phase were almost in the same in the seven healthy subjects. Therefore, the PCAMs give us a clear view of the anterior and posterior myocardial excitation for the respective electrophysiological phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gepstein L, Hayam G, Ben-Haim SA. A novel method for nonfluoroscopic catheter-based Electroanatomical mapping of the heart. Circulation 1997; 95(6): 1611–1622.

    PubMed  CAS  Google Scholar 

  2. Lessick J, Hayam G, Zaretsky A, Reisner SA, Schwartz Y, Ben-Haim SA. Evaluation of inotropic changes in ventricular function by NOGA mapping: comparison with echocardiography. J Appl Physiol 2002; 93: 418–426.

    PubMed  Google Scholar 

  3. Kobayashi Y, Shimada K, Yamagishi H, et al. Left ventricular electromechanical mapping in stunned myocardium. Circulation 2000; 102: e25–e26.

    PubMed  CAS  Google Scholar 

  4. Bøtker HE, Lassen JF, Hermansen F, et al. Electromechanical mapping for detection of myocardial viability in patients with ischemic cardiomyopathy. Circulation 2001; 103: 1631–1637

    PubMed  Google Scholar 

  5. Greensite F, Huiskamp G. An improved method for estimating epicardial potentials from the body surface. IEEE Trans Biomed Eng 1998; 45(1): 98–104.

    Article  PubMed  CAS  Google Scholar 

  6. van Oosterom A. The use of the spatial covariance in computing pericardial potentials. IEEE Trans Biomed Eng 1999; 46(7): 778–787.

    Article  PubMed  Google Scholar 

  7. Modre R, Tilg B, Fischer G, Wach P. Noninvasive myocardial activation time imaging: a novel inverse algorithm applied to clinical ECG mapping data. IEEE Trans Biomed Eng 2002; 49(10): 1153–1161.

    Article  PubMed  Google Scholar 

  8. Burnes JE, Taccardi B, Rudy Y. A noninvasive imaging modality for cardiac arrhythmias. Circulation 2000; 102: 2152–2158.

    PubMed  CAS  Google Scholar 

  9. Hosaka H, Cohen D. Visual determination of generators of the magnetocardiogram. J Electrocardiol 1976; 9(4): 426–432.

    Article  PubMed  CAS  Google Scholar 

  10. Nakaya Y, Sumi M, Saito K, Fujino K, Murakami M, Mori H. Analysis of current source of the heart using isomagnetic and vector arrow maps. Jpn Heart J 1984; 25(5): 701–711.

    PubMed  CAS  Google Scholar 

  11. Tsukada K, Haruta Y, Adachi A, et al. Multichannel SQUID system detecting tangential components of the cardiac magnetic field. Rev Sci Instrum 1995; 66(10): 5085–5091.

    Article  CAS  Google Scholar 

  12. Horigome H, Siono J, Shigemitsu S, et al. Detection of cardiac hypertrophy in the fetus by approximation of the current dipole using magnetocardiography. Pediatr Res 2001; 50(2): 242–245.

    Article  PubMed  CAS  Google Scholar 

  13. Miyashita T, Kandori A, Tsukada K, et al. Construction of tangential vectors from normal cardiac magnetic field components. Proceedings of the 20th annual international conference of the IEEE engineering in medicine and biology society. 1998 October 29–November 1: 520–523.

  14. Kuusisto J, Koskinen R, Mäntynen V, et al. Diversity in activation of healthy atria by magnetocardiographic gradient analysis. In: Proceedings of the 14th International Conference on Biomagnetism. 2004 August 8–12, 407–408.

  15. Yamada S, Tsukada K, Miyashita T, Kuga K, Yamaguchi I. Noninvasive, direct visualization of macro-reentrant circuits by using magnetocardiograms: initiation and persistence of atrial flutter. Europace 2003; 5: 343–350.

    Article  PubMed  CAS  Google Scholar 

  16. Kandori A, Shimizu W, Yokokawa M, et al. Detection of spatial repolarization abnormalities is patients with LQT1 and LQT2 forms of congenital long-QT syndrome. Physiol Meas 2002; 23: 603–614.

    Article  PubMed  Google Scholar 

  17. Kanzaki H, Nakatani S, Kandori A, Tsukada K, Miyatake K. A new screening method to diagnose coronary artery disease using multichannel magnetocardiogram and simple exercise. Basic Res Cardiol 2003; 98: 124–132.

    Article  PubMed  Google Scholar 

  18. Tsukada K, Mitsui T, Terada Y, Horigome H, Yamaguchi I. Noninvasive visualization of multiple simultaneously activated regions on torso magnetocardiographic maps during ventricular depolarization. J Electrocardiol 1999; 32(4): 305–313.

    Article  PubMed  CAS  Google Scholar 

  19. Ogata K, Kandori A, Miyashita T, Tsukada K. Visualization method of current distribution in cardiac muscle using a heart model. Trans Jpn Soc Med Biol Eng 2003; 41(1): 25–33.

    Google Scholar 

  20. Nomura M, Nakaya Y, Saito K, et al. Noninvasive localization of accessory pathways by magnetocardiographic imaging. Clin Cardiol 1994; 17: 239–244.

    Article  PubMed  CAS  Google Scholar 

  21. Hren R, Stroink G, Horáček BM. Accuracy of single-dipole inverse solution when localizing ventricular pre-excitation sites: simulation study. Med Biol Eng Comput 1998; 36: 323–329.

    Article  PubMed  CAS  Google Scholar 

  22. Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 1987; 32(1): 11–22.

    Article  PubMed  CAS  Google Scholar 

  23. Durrer D, van Dam RTh, Freud GE, Janse MJ, Meijler FL, Arzbaecher RC. Total excitation of the isolated human heart. Circulation 1970; 41: 899–912.

    PubMed  CAS  Google Scholar 

  24. Sato M, Terada Y, Mitsui T, Miyashita T, Kandori A, Tsukada K. Visualization of atrial excitation by magnetocardiogram. Int J Cardiac Imaging 2002; 18: 305–312.

    Article  Google Scholar 

  25. Goldman MJ. Principles of Clinical Electrocardiography. California: Lange Medical Publications, 1986.

    Google Scholar 

  26. Smith WE. Estimation of the spatio-temporal correlations of biological electrical sources from their magnetic field. IEEE Trans Biomed Eng 1992; 39: 997–1004.

    Article  PubMed  CAS  Google Scholar 

  27. Killmann R, Jaros GG, Wach P, et al. Localisation of myocardial ischemia from the magnetocardiogram using current density reconstruction method: computer simulation study. Med Biol Eng Comput 1995; 33: 643–651.

    Article  PubMed  CAS  Google Scholar 

  28. Kandori A, Hosono T, Chiba Y, et al. Classifying cases of fetal Wolff-Parkinson-White syndrome by estimating the accessory pathway from fetal magnetocardiograms. Med Biol Eng Comput 2003; 41: 33–39.

    Article  PubMed  CAS  Google Scholar 

  29. Ogata K, Kandori A, Miyashita T, et al. Projecting cardiac-current images onto a 3-D standard heart model. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2003 17–21 September, pp. 517–520.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogata, K., Kandori, A., Miyashita, T. et al. Visualization of three-dimensional cardiac electrical excitation using standard heart model and anterior and posterior magnetocardiogram. Int J Cardiovasc Imaging 22, 581–593 (2006). https://doi.org/10.1007/s10554-005-9048-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-005-9048-5

Keywords

Navigation