Skip to main content
Log in

A Novel Model to Test Accuracy and Reproducibility of MDCT Scan Protocols for Coronary Calcium in Vivo

  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Objectives: We compared the accuracy and reliability of prospectively triggered, retrospectively ECG gated, and non-gated CT image reconstruction for measurements of coronary artery calcification (CAC) in vivo using a novel animal model. Materials and Methods: In six Yorkshire farm pigs, prefabricated chains of cortical bone fragments were sutured over the epicardial bed of the major coronary arteries. Using a 4-slice MDCT scanner, each animal was imaged with two different protocols: sequential acquisition with prospective ECG triggering, and spiral acquisition with retrospectively ECG gated image reconstruction- non-gated reconstructions were also generated from these latter scans. Two independent observers measured the ‘Agatston score’ (AS), the calcified volume (CV), and mineral mass (MM). To calculate accuracy of MM measurements the ash weight of the burned bone fragments was compared to MDCT derived MM. Results: Six pigs successfully underwent surgery and CT imaging (mean heart rate: 86 ±12 bpm). MM measurements from prospectively ECG triggered CT sequential scans were more accurate (p<0.02) and reproducible (p=0.05) than sequential CT scans without ECG triggering or spiral acquisition using retrospective ECG gating. Conclusions: At high heart rates prospective ECG triggered image reconstruction is more accurate and reproducible for CAC scoring than retrospective ECG gated reconstruction and non-gated reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MJ Budoff, GA Diamond and P Raggi, Continuous probabilistic prediction of angiographically significant coronary artery disease using electron beam tomography. Circulation 105 (2002) 1791-1796

    Article  PubMed  Google Scholar 

  2. LF Bielak, JA Rumberger, PF Sheedy II, RS Schwartz and PA Peyser, Probabilistic model for prediction of angiographically defined obstructive coronary artery disease using electron beam computed tomography calcium score strata. Circulation 102 (2000) 380-385

    PubMed  CAS  Google Scholar 

  3. PG O’Malley, AJ Taylor, JL Jackson, TM Doherty and RC Detrano, Prognostic value of coronary electron-beam computed tomography for coronary heart disease events in asymptomatic populations. Am J Cardiol 85 (2000) 945-948

    Article  PubMed  CAS  Google Scholar 

  4. S Achenbach, D Ropers and K Pohle, Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation. Circulation 106 (2002) 1077-1082

    Article  PubMed  CAS  Google Scholar 

  5. TQ Callister, P Raggi, B Cooil, NJ Lippolis and DJ Russo, Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med 339 (1998) 1972-1978

    Article  PubMed  CAS  Google Scholar 

  6. HS Hecht and SM Harman, Evaluation by electron beam tomography of changes in calcified coronary plaque in treated and untreated asymptomatic patients and relation to serum lipid levels. The American Journal of Cardiology 91 (2003) 1131-1134

    Article  PubMed  Google Scholar 

  7. RA O’Rourke, BH Brundage and VF Froelicher, American College of Cardiology/American Heart Association Expert Consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. Circulation 102 (2000) 126-140

    PubMed  CAS  Google Scholar 

  8. S Achenbach, D Ropers and S Mohlenkamp, Variability of repeated coronary artery calcium measurements by electron beam tomography. Am J Cardiol 87 (2001) 210-213

    Article  PubMed  CAS  Google Scholar 

  9. CR Becker, T Kleffel and A Crispin, Coronary artery calcium measurement: agreement of multirow detector and electron beam CT. AJR Am J Roentgenol 176 (2001) 1295-1298

    PubMed  CAS  Google Scholar 

  10. JJ Carr, JR Crouse III, DC Goff Jr, RB D’Agostino Jr, NP Peterson and GL Burke, Evaluation of subsecond gated helical CT for quantification of coronary artery calcium and comparison with electron beam CT. AJR Am J Roentgenol 174 (2000) 915-921

    PubMed  CAS  Google Scholar 

  11. PM Ooijen van, R Vliegenthart, JC Witteman and M Oudkerk, Influence of scoring parameter settings on Agatston and volume scores for coronary calcification. Eur Radiol 15 (2005) 102-110

    Article  PubMed  Google Scholar 

  12. TF Jakobs, BJ Wintersperger and P Herzog, Ultra-low-dose coronary artery calcium screening using multislice CT with retrospective ECG gating. Eur Radiol 13 (2003) 1923-1930

    Article  PubMed  Google Scholar 

  13. U Hoffmann, DC Kwait, J Handwerker, R Chan, G Lamuraglia and TJ Brady, Vascular calcification in ex vivo carotid specimens: Precision and accuracy of measurements with multi-detector row CT. Radiology 229 (2003) 375-381

    Article  PubMed  Google Scholar 

  14. C Hong, KT Bae and TK Pilgram, Coronary artery calcium: Accuracy and reproducibility of measurements with multi-detector row CT–assessment of effects of different thresholds and quantification methods. Radiology 227 (2003) 795-801

    Article  PubMed  Google Scholar 

  15. CH McCollough, RB Kaufmann, BM Cameron, DJ Katz, PF Sheedy II and PA Peyser, Electron-beam CT: use of a calibration phantom to reduce variability in calcium quantitation. Radiology 196 (1995) 159-165

    PubMed  CAS  Google Scholar 

  16. Hoffmann U B-SA, Achenbach S, Ferencik M, Brady TJ, Levy D, O’Donnell CJ. Interscan and interobserver Variability of coronary artery calcium measurements in prospectively triggered multislice computed tomography. Radiology 2003; Supplement

  17. AS Agatston, WR Janowitz, FJ Hildner, NR Zusmer, M Viamonte Jr. and R Detrano, Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15 (1990) 827-832

    Article  PubMed  CAS  Google Scholar 

  18. M Ferencik, A Ferullo and S Achenbach, Coronary calcium quantification using various calibration phantoms and scoring thresholds. Invest Radiol 38 (2003) 559-566

    Article  PubMed  Google Scholar 

  19. K Schmid, WO McSharry, CH Pameijer and JP Binette, Chemical and physicochemical studies on the mineral deposits of the human atherosclerotic aorta. Atherosclerosis 37 (1980) 199-210

    Article  PubMed  CAS  Google Scholar 

  20. B Lu, SS Mao and N Zhuang, Coronary artery motion during the cardiac cycle and optimal ECG triggering for coronary artery imaging. Invest Radiol. 36 (2001) 250-256

    Article  PubMed  CAS  Google Scholar 

  21. CR Becker, A Knez, B Ohnesorge, UJ Schoepf and MF Reiser, Imaging of noncalcified coronary plaques using helical CT with retrospective ECG gating. AJR Am J Roentgenol 175 (2000) 423-424

    PubMed  CAS  Google Scholar 

  22. B Ohnesorge, T Flohr and C Becker, Cardiac imaging with rapid, retrospective ECG synchronized multilevel spiral CT. Radiologe 40 (2000) 111-117

    Article  PubMed  CAS  Google Scholar 

  23. S Wicky, M Rosol and LM Hamberg, Evaluation of retrospective multisector and half scan ECG-gated multidetector cardiac CT protocols with moving phantoms. J Comput Assist Tomogr 26 (2002) 768-776

    Article  PubMed  Google Scholar 

  24. Wicky S, Hoffmann U, Rosol M, Yucel K, Brady T. Comparative study of a moving heart phantom with two ECG-gated units. In:ESCR. Luzern, Switzerland, 2002

  25. T Giesler, U Baum and D Ropers, Noninvasive visualization of coronary arteries using contrast-enhanced multidetector CT: Influence of heart rate on image quality and stenosis detection. AJR Am J Roentgenol 179 (2002) 911-916

    PubMed  Google Scholar 

  26. S Achenbach, S Ulzheimer and U Baum, Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation 102 (2000) 2823-2828

    PubMed  CAS  Google Scholar 

  27. T Flohr and B Ohnesorge, Heart rate adaptive optimization of spatial and temporal resolution for electrocardiogram-gated multislice spiral CT of the heart. J Comput Assist Tomogr 25 (2001) 907-923

    Article  PubMed  CAS  Google Scholar 

  28. T Flohr and B Ohnesorge, Heart rate adaptive optimization of spatial and temporal resolution for electrocardiogram-gated multislice spiral CT of the heart. J Comput Assist Tomogr 25 (2001) 907-923

    Article  PubMed  CAS  Google Scholar 

  29. RL Morin, TC Gerber and CH McCollough, Radiation dose in computed tomography of the heart. Circulation 107 (2003) 917-922

    Article  PubMed  Google Scholar 

  30. S Mao, J Child, S Carson, SC Liu, RJ Oudiz and MJ Budoff, Sensitivity to detect small coronary artery calcium lesions with varying slice thickness using electron beam tomography. Invest Radiol 38 (2003) 183-187

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rosol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosol, M., Sachdev, K., Enzweiler, C.N. et al. A Novel Model to Test Accuracy and Reproducibility of MDCT Scan Protocols for Coronary Calcium in Vivo. Int J Cardiovasc Imaging 22, 111–118 (2006). https://doi.org/10.1007/s10554-005-6535-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-005-6535-7

Keywords

Navigation